Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Appl Physiol (1985) ; 103(5): 1888-93, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17641217

RESUMO

The cardiovascular system operates under a wide scale of demands, ranging from conditions of rest to extreme stress. How the heart muscle matches rates of ATP production with utilization is an area of active investigation. ATP-sensitive potassium (K(ATP)) channels serve a critical role in the orchestration of myocardial energetic well-being. K(ATP) channel heteromultimers consist of inwardly-rectifying K(+) channel 6.2 and ATP-binding cassette sulfonylurea receptor 2A that translates local ATP/ADP levels, set by ATPases and phosphotransfer reactions, to the channel pore function. In cells in which the mobility of metabolites between intracellular microdomains is limited, coupling of phosphotransfer pathways with K(ATP) channels permits a high-fidelity transduction of nucleotide fluxes into changes in membrane excitability, matching energy demands with metabolic resources. This K(ATP) channel-dependent optimization of cardiac action potential duration preserves cellular energy balance at varying workloads. Mutations of K(ATP) channels result in disruption of the nucleotide signaling network and generate a stress-vulnerable phenotype with excessive susceptibility to injury, development of cardiomyopathy, and arrhythmia. Solving the mechanisms underlying the integration of K(ATP) channels into the cellular energy network will advance the understanding of endogenous cardioprotection and the development of strategies for the management of cardiovascular injury and disease progression.


Assuntos
Trifosfato de Adenosina/metabolismo , Doenças Cardiovasculares/prevenção & controle , Ativação do Canal Iônico , Canais KATP/metabolismo , Miocárdio/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Potenciais de Ação , Difosfato de Adenosina/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Difusão , Metabolismo Energético , Homeostase , Humanos , Modelos Cardiovasculares , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Droga/metabolismo , Transdução de Sinais , Receptores de Sulfonilureias
3.
Clin Pharmacol Ther ; 81(1): 99-103, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17186006

RESUMO

A third of inherited diseases result from premature termination codon mutations. Aminoglycosides have emerged as vanguard pharmacogenetic agents in treating human genetic disorders due to their unique ability to suppress gene translation termination induced by nonsense mutations. In preclinical and pilot clinical studies, this therapeutic approach shows promise in phenotype correction by promoting otherwise defective protein synthesis. The challenge ahead is to maximize efficacy while preventing interaction with normal protein production and function.


Assuntos
Aminoglicosídeos/farmacologia , Códon sem Sentido , Doenças Genéticas Inatas/tratamento farmacológico , Farmacogenética/métodos , Modificação Traducional de Proteínas/efeitos dos fármacos , Aminoglicosídeos/uso terapêutico , Animais , Doenças Genéticas Inatas/genética , Humanos
5.
Proc Natl Acad Sci U S A ; 100(5): 2695-9, 2003 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-12594332

RESUMO

One half million patients suffer from colorectal cancer in industrialized nations, yet this disease exhibits a low incidence in under-developed countries. This geographic imbalance suggests an environmental contribution to the resistance of endemic populations to intestinal neoplasia. A common epidemiological characteristic of these colon cancer-spared regions is the prevalence of enterotoxigenic bacteria associated with diarrheal disease. Here, a bacterial heat-stable enterotoxin was demonstrated to suppress colon cancer cell proliferation by a guanylyl cyclase C-mediated signaling cascade. The heat-stable enterotoxin suppressed proliferation by increasing intracellular cGMP, an effect mimicked by the cell-permeant analog 8-br-cGMP. The antiproliferative effects of the enterotoxin and 8-br-cGMP were reversed by L-cis-diltiazem, a cyclic nucleotide-gated channel inhibitor, as well as by removal of extracellular Ca(2+), or chelation of intracellular Ca(2+). In fact, both the enterotoxin and 8-br-cGMP induced an L-cis-diltiazem-sensitive conductance, promoting Ca(2+) influx and inhibition of DNA synthesis in colon cancer cells. Induction of this previously unrecognized antiproliferative signaling pathway by bacterial enterotoxin could contribute to the resistance of endemic populations to intestinal neoplasia, and offers a paradigm for targeted prevention and therapy of primary and metastatic colorectal cancer.


Assuntos
Toxinas Bacterianas/farmacologia , Neoplasias do Colo/patologia , Neoplasias do Colo/prevenção & controle , Neoplasias do Colo/terapia , Enterotoxinas/farmacologia , Guanilato Ciclase , Receptores de Superfície Celular/metabolismo , Receptores de Peptídeos , Cálcio/metabolismo , Diferenciação Celular , Divisão Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , DNA/metabolismo , Relação Dose-Resposta a Droga , Proteínas de Escherichia coli , Hormônios Gastrointestinais/metabolismo , Humanos , Imunidade Inata , Ligantes , Potenciais da Membrana/efeitos dos fármacos , Peptídeos Natriuréticos , Técnicas de Patch-Clamp , Peptídeos/metabolismo , Receptores de Enterotoxina , Receptores Acoplados a Guanilato Ciclase , Transdução de Sinais , Células Tumorais Cultivadas
6.
Neuron ; 31(2): 233-45, 2001 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-11502255

RESUMO

ATP-sensitive potassium (K(ATP)) channels are bifunctional multimers assembled by an ion conductor and a sulfonylurea receptor (SUR) ATPase. Sensitive to ATP/ADP, K(ATP) channels are vital metabolic sensors. However, channel regulation by competitive ATP/ADP binding would require oscillations in intracellular nucleotides incompatible with cell survival. We found that channel behavior is determined by the ATPase-driven engagement of SUR into discrete conformations. Capture of the SUR catalytic cycle in prehydrolytic states facilitated pore closure, while recruitment of posthydrolytic intermediates translated in pore opening. In the cell, channel openers stabilized posthydrolytic states promoting K(ATP) channel activation. Nucleotide exchange between intrinsic ATPase and ATP/ADP-scavenging systems defined the lifetimes of specific SUR conformations gating K(ATP) channels. Signal transduction through the catalytic module provides a paradigm for channel/enzyme operation and integrates membrane excitability with metabolic cascades.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Adenosina Trifosfatases/metabolismo , Ativação do Canal Iônico , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/fisiologia , Receptores de Droga/fisiologia , Transdução de Sinais , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Berílio/farmacologia , Sítios de Ligação , Condutividade Elétrica , Inibidores Enzimáticos/farmacologia , Fluoretos/farmacologia , Cobaias , Hidrólise , Canais de Potássio/química , Canais de Potássio/genética , Conformação Proteica , Receptores de Droga/química , Receptores de Droga/genética , Proteínas Recombinantes , Receptores de Sulfonilureias , Vanadatos/farmacologia
7.
Proc Natl Acad Sci U S A ; 98(13): 7623-8, 2001 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-11390963

RESUMO

Transduction of energetic signals into membrane electrical events governs vital cellular functions, ranging from hormone secretion and cytoprotection to appetite control and hair growth. Central to the regulation of such diverse cellular processes are the metabolism sensing ATP-sensitive K+ (K(ATP)) channels. However, the mechanism that communicates metabolic signals and integrates cellular energetics with K(ATP) channel-dependent membrane excitability remains elusive. Here, we identify that the response of K(ATP) channels to metabolic challenge is regulated by adenylate kinase phosphotransfer. Adenylate kinase associates with the K(ATP) channel complex, anchoring cellular phosphotransfer networks and facilitating delivery of mitochondrial signals to the membrane environment. Deletion of the adenylate kinase gene compromised nucleotide exchange at the channel site and impeded communication between mitochondria and K(ATP) channels, rendering cellular metabolic sensing defective. Assigning a signal processing role to adenylate kinase identifies a phosphorelay mechanism essential for efficient coupling of cellular energetics with K(ATP) channels and associated functions.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Isoenzimas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/fisiologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Adenilato Quinase/deficiência , Adenilato Quinase/genética , Animais , Células COS , Membrana Celular/fisiologia , Células Cultivadas , Chlorocebus aethiops , Dinitrofenóis/farmacologia , Cobaias , Coração/fisiologia , Isoenzimas/deficiência , Isoenzimas/genética , Cinética , Camundongos , Camundongos Knockout , Mitocôndrias/fisiologia , Modelos Biológicos , Miocárdio/citologia , Oligomicinas/farmacologia , Canais de Potássio/genética , Proteínas Recombinantes/metabolismo , Sarcolema/enzimologia , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...