Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 13(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050288

RESUMO

Mesenteric ischemia/reperfusion (I/R), following the transient deprivation of blood flow to the gut, triggers an acute flogistic process involving the disruption of endothelial and epithelial barriers integrity, the activation of immune cells, and the abundant release of inflammatory mediators. Among them, the lipid mediator sphingosine-1-phosphate (S1P) is involved in maintaining epithelial and endothelial barrier integrity and in governing the migration of immune cells through the interaction with S1P1-5 receptors. Therefore, the present work aims to investigate the involvement of S1P signaling in intestinal I/R-induced injury by studying the effects of FTY720, the non-selective S1P1,3-5 agonist, and comparing them with the responses to ozanimod, selective S1P1,5 agonist, in a murine model of gut I/R. Intestinal edema, gut and lung neutrophil infiltration, and oxidative stress were evaluated through biochemical and morphological assays. The collected results highlight the protective action of FTY720 against the inflammatory cascade elicited by mesenteric I/R injury, mainly through the control of vascular barrier integrity. While these beneficial effects were mimicked by ozanimod and can be therefore attributed largely to the effects exerted by FTY720 on S1P1, the recruitment of myeloid cells to the injured areas, limited by FTY720 but not by ozanimod, rather suggests the involvement of other receptor subtypes.

2.
Front Pharmacol ; 10: 691, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297055

RESUMO

Besides their long-known critical role in embryonic growth and in cancer development and progression, erythropoietin-producing hepatocellular carcinoma type B (EphB) receptor tyrosine kinases and their ephrin-B ligands are involved in the modulation of immune responses and in remodeling and maintaining the integrity of the intestinal epithelial layer. These processes are critically involved in the pathogenesis of inflammatory-based disorders of the gut, like inflammatory bowel diseases (IBDs). Accordingly, our aim was to investigate the role of the EphB/ephrin-B system in intestinal inflammation by assessing the local and systemic effects produced by its pharmacological manipulation in 2,4,6-trinitrobenzenesulfonic acid (TNBS)- (Th1-dependent model) and dextran sulphate sodium (DSS)- (innate response model) induced colitis in mice. To this purpose, we administered chimeric Fc-conjugated proteins, allegedly able to uni-directionally activate either forward (ephrin-B1-Fc) or reverse (EphB1-Fc) signaling, and the soluble monomeric EphB4 extracellular domain protein, that, simultaneously interfering with both signaling pathways, acts as EphB/ephrin-B antagonist.The blockade of the EphB/ephrin-B forward signaling by EphB4 and EphB1-Fc was ineffective against DSS-induced colitis while it evoked remarkable beneficial effects against TNBS colitis: it counteracted all the evaluated inflammatory responses and the changes elicited on splenic T lymphocytes subpopulations, without preventing the appearance of a splice variant of ephrin-B2 gene elicited by the haptenating agent in the colon. Interestingly, EphB4, preferentially displacing EphB4/ephrin-B2 interaction over EphB1/ephrin-B1 binding, was able to promote Tumor Necrosis Factor alpha (TNFα) release by splenic mononuclear cells in vitro. On the whole, the collected results point to a potential role of the EphB/ephrin-B system as a pharmacological target in intestinal inflammatory disorders and suggest that the therapeutic efficacy of its blockade seemingly works through the modulation of immune responses, independent of the changes at the transcriptional and translational level of EphB4 and ephrin-B2 genes.

3.
PLoS One ; 13(8): e0202670, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30161157

RESUMO

Mesenteric ischemia/reperfusion is a clinical emergency with high morbidity and mortality due to the transient reduction of blood supply to the bowel. In recent years, the critical contribution of gut microbiome to human health and proper gastrointestinal functions has gradually emerged. In the current study, we investigated the protective effects of five days supplementation with Bifidobacterium bifidum PRL2010 in a murine model of gut ischemia/reperfusion. Our findings indicate that animals pretreated with B. bifidum PRL2010 showed lower neutrophil recruitment in the lungs, remarkably reduced bacterial translocation and decreased transcription levels of TNFalpha and IL-10 both in liver and kidneys, at the same time increasing those of IL-12 in kidneys. Inhibiting the adhesion of pathogenic bacteria and boosting host innate immunity responses are among the possible protective mechanisms enacted by the probiotic. These results demonstrate that short-period treatment with B. bifidum PRL2010 is a potential strategy to dampen remote organ injury due to mesenteric ischemia/reperfusion.


Assuntos
Bifidobacterium bifidum/fisiologia , Intestinos/microbiologia , Traumatismo por Reperfusão/patologia , Animais , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Imunidade Inata , Interleucina-10/metabolismo , Intestinos/patologia , Rim/metabolismo , Fígado/metabolismo , Pulmão/imunologia , Pulmão/patologia , Malondialdeído/metabolismo , Camundongos , Neutrófilos/citologia , Neutrófilos/imunologia , Probióticos/administração & dosagem , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/prevenção & controle , Fator de Necrose Tumoral alfa/metabolismo
4.
Front Pharmacol ; 8: 809, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167641

RESUMO

The existence of a cholinergic anti-inflammatory pathway negatively modulating the inflammatory and immune responses in various clinical conditions and experimental models has long been postulated. In particular, the protective involvement of the vagus nerve and of nicotinic Ach receptors (nAChRs) has been proposed in intestinal inflammation and repeatedly investigated in DSS- and TNBS-induced colitis. However, the role of α7 nAChRs stimulation is still controversial and the potential contribution of α4ß2 nAChRs has never been explored in this experimental condition. Our aims were therefore to pharmacologically investigate the role played by both α7 and α4ß2 nAChRs in the modulation of the local and systemic inflammatory responses activated in TNBS-induced colitis in mice and to assess the involvement of the spleen in nicotinic responses. To this end, TNBS-exposed mice were sub-acutely treated with various subcutaneous doses of highly selective agonists (AR-R17779 and TC-2403) and antagonists (methyllycaconitine and dihydro-ß-erythroidine) of α7 and α4ß2 nAChRs, respectively, or with sulfasalazine 50 mg/kg per os and clinical and inflammatory responses were evaluated by means of biochemical, histological and flow cytometry assays. α4ß2 ligands evoked weak and contradictory effects, while α7 nAChR agonist AR-R17779 emerged as the most beneficial treatment, able to attenuate several local markers of colitis severity and to revert the rise in splenic T-cells and in colonic inflammatory cytokines levels induced by haptenization. After splenectomy, AR-R17779 lost its protective effects, demonstrating for the first time that, in TNBS-model of experimental colitis, the anti-inflammatory effect of exogenous α7 nAChR stimulation is strictly spleen-dependent. Our findings showed that the selective α7 nAChRs agonist AR-R17779 exerted beneficial effects in a model of intestinal inflammation characterized by activation of the adaptive immune system and that the spleen is essential to mediate this cholinergic protection.

5.
Shock ; 48(6): 681-689, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28472014

RESUMO

Mesenteric ischemia-reperfusion (I/R)-induced injury targets primarily endothelial and epithelial cells, leading to a cascade of inflammatory events, eventually culminating in life-threatening syndromes. Hitherto, the role of Eph, the largest family of tyrosine kinase receptors, and of their cell-bound ephrin ligands, whose interaction generates a bidirectional signaling, is still debated in I/R injury. The aim of the present work was therefore to investigate the effects produced by unidirectional activation of forward signaling (administration of chimeric protein ephrinA1-Fc), of reverse signaling (EphA2-Fc), or inhibition of both signals (monomeric EphA2 and the protein-protein interaction inhibitor UniPR1331) on the local and systemic inflammatory responses triggered by mesenteric I/R in mice.When administered at 200 µg/kg i.v., ephrin-A1-Fc prevented intestinal and lung I/R-induced injury, decreasing in the pulmonary district leukocytes recruitment, IL-1ß and TNFα levels, and EphA2 overexpression by mesenteric I/R. Blockade of Eph-ephrin signaling by equimolar EphA2 efficiently antagonized I/R-induced gut edema formation, an effect shared also by UniPR1331, mitigated lung mucosal injury, and counteracted the increase in pro-inflammatory cytokines levels. EphA2-Fc 180 µg/kg or equimolar Fc alone did not significantly modify the inflammatory responses to I/R.Our data suggest that the Eph-ephrin system is directly involved in the development of the acute inflammatory process activated in the gut by hypoxia-reoxygenation and in its amplification to distant organs, revealing that a fine pharmacological tuning of this signaling pathway may represent an attractive strategy to contain the I/R-induced inflammatory cascade.


Assuntos
Efrina-A1/farmacologia , Efrina-A2/metabolismo , Fragmentos Fc das Imunoglobulinas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Traumatismo por Reperfusão , Transdução de Sinais/efeitos dos fármacos , Animais , Feminino , Masculino , Mesentério/metabolismo , Mesentério/patologia , Camundongos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...