Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Parasitol ; 192: 65-72, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30040960

RESUMO

Galactokinase catalyses the ATP-dependent phosphorylation of galactose. A galactokinase-like sequence was identified in a Fasciola hepatica EST library. Recombinant expression of the corresponding protein in Escherichia coli resulted in a protein of approximately 50 kDa. The protein is monomeric, like galactokinases from higher animals, yeasts and some bacteria. The protein has no detectable enzymatic activity with galactose or N-acetylgalactosamine as a substrate. However, it does bind to ATP. Molecular modelling predicted that the protein adopts a similar fold to galactokinase and other GHMP kinases. However, a key loop in the active site was identified which may influence the lack of activity. Sequence analysis strongly suggested that this protein (and other proteins annotated as "galactokinase" in the trematodes Schistosoma mansoni and Clonorchis sinensis) are closer to N-acetylgalactosamine kinases. No other galactokinase-like sequences appear to be present in the genomes of these three species. This raises the intriguing possibility that these (and possibly other) trematodes are unable to catabolise galactose through the Leloir pathway due to the lack of a functional galactokinase.


Assuntos
Fasciola hepatica/enzimologia , Galactoquinase/metabolismo , Galactose/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Sequência de Bases , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Fluorometria , Galactoquinase/genética , Galactoquinase/isolamento & purificação , Galactose/química , Modelos Moleculares , Fosforilação , Filogenia , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
2.
Parasitology ; 142(3): 463-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25124392

RESUMO

Leloir pathway enzyme uridine diphosphate (UDP)-galactose 4'-epimerase from the common liver fluke Fasciola hepatica (FhGALE) was identified and characterized. The enzyme can be expressed in, and purified from, Escherichia coli. The recombinant enzyme is active: the K(m) (470 µM) is higher than the corresponding human enzyme (HsGALE), whereas the k(cat) (2.3 s(-1)) is substantially lower. FhGALE binds NAD(+) and has shown to be dimeric by analytical gel filtration. Like the human and yeast GALEs, FhGALE is stabilized by the substrate UDP-galactose. Molecular modelling predicted that FhGALE adopts a similar overall fold to HsGALE and that tyrosine 155 is likely to be the catalytically critical residue in the active site. In silico screening of the National Cancer Institute Developmental Therapeutics Program library identified 40 potential inhibitors of FhGALE which were tested in vitro. Of these, 6 showed concentration-dependent inhibition of FhGALE, some with nanomolar IC50 values. Two inhibitors (5-fluoroorotate and N-[(benzyloxy)carbonyl]leucyltryptophan) demonstrated selectivity for FhGALE over HsGALE. These compounds also thermally destabilized FhGALE in a concentration-dependent manner. Interestingly, the selectivity of 5-fluoroorotate was not shown by orotic acid, which differs in structure by 1 fluorine atom. These results demonstrate that, despite the structural and biochemical similarities of FhGALE and HsGALE, it is possible to discover compounds which preferentially inhibit FhGALE.


Assuntos
Fasciola hepatica/enzimologia , UDPglucose 4-Epimerase/química , Sequência de Aminoácidos , Animais , Inibidores Enzimáticos/farmacologia , Fasciola hepatica/efeitos dos fármacos , Fasciola hepatica/genética , Concentração Inibidora 50 , Ponto Isoelétrico , Dados de Sequência Molecular , Multimerização Proteica , UDPglucose 4-Epimerase/antagonistas & inibidores , UDPglucose 4-Epimerase/genética
3.
Biochim Biophys Acta ; 1844(4): 744-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24566472

RESUMO

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyses one of the two steps in glycolysis which generate the reduced coenzyme NADH. This reaction precedes the two ATP generating steps. Thus, inhibition of GAPDH will lead to substantially reduced energy generation. Consequently, there has been considerable interest in developing GAPDH inhibitors as anti-cancer and anti-parasitic agents. Here, we describe the biochemical characterisation of GAPDH from the common liver fluke Fasciola hepatica (FhGAPDH). The primary sequence of FhGAPDH is similar to that from other trematodes and the predicted structure shows high similarity to those from other animals including the mammalian hosts. FhGAPDH lacks a binding pocket which has been exploited in the design of novel antitrypanosomal compounds. The protein can be expressed in, and purified from Escherichia coli; the recombinant protein was active and showed no cooperativity towards glyceraldehyde 3-phosphate as a substrate. In the absence of ligands, FhGAPDH was a mixture of homodimers and tetramers, as judged by protein-protein crosslinking and analytical gel filtration. The addition of either NAD⁺ or glyceraldehyde 3-phosphate shifted this equilibrium towards a compact dimer. Thermal scanning fluorimetry demonstrated that this form was considerably more stable than the unliganded one. These responses to ligand binding differ from those seen in mammalian enzymes. These differences could be exploited in the discovery of reagents which selectively disrupt the function of FhGAPDH.


Assuntos
Fasciola hepatica/enzimologia , Gliceraldeído 3-Fosfato/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Proteínas de Helminto/metabolismo , NAD/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Biocatálise , Escherichia coli/genética , Escherichia coli/metabolismo , Fasciola hepatica/química , Fasciola hepatica/genética , Fluorometria/métodos , Gliceraldeído 3-Fosfato/química , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/genética , Proteínas de Helminto/química , Proteínas de Helminto/genética , Humanos , Cinética , Modelos Moleculares , NAD/química , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
4.
FEBS Lett ; 587(21): 3422-7, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24070897

RESUMO

The glycolytic enzyme triose phosphate isomerase from Schistosoma mansoni is a potential target for drugs and vaccines. Molecular modelling of the enzyme predicted that a Ser-Ala-Asp motif which is believed to be a helminth-specific epitope is exposed. The enzyme is dimeric (as judged by gel filtration and cross-linking), resistant to proteolysis and highly stable to thermal denaturation (melting temperature of 82.0 °C). The steady-state kinetic parameters are high (Km for dihydroxyacetone phosphate is 0.51 mM; Km for glyceraldehyde 3-phosphate is 1.1 mM; kcat for dihydroxyacetone phosphate is 7800 s(-1) and kcat for glyceraldehyde 3-phosphate is 6.9s(-1)).


Assuntos
Antígenos de Helmintos/química , Schistosoma mansoni/enzimologia , Triose-Fosfato Isomerase/química , Sequência de Aminoácidos , Animais , Antígenos de Helmintos/imunologia , Antígenos de Helmintos/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Epitopos/imunologia , Gliceraldeído 3-Fosfato/metabolismo , Humanos , Cinética , Modelos Moleculares , Schistosoma mansoni/imunologia , Schistosoma mansoni/metabolismo , Triose-Fosfato Isomerase/imunologia , Triose-Fosfato Isomerase/metabolismo
5.
Biochimie ; 95(11): 2182-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23973283

RESUMO

Triose phosphate isomerase (TPI) catalyses the interconversion of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, a reaction in the glycolytic pathway. TPI from the common liver fluke, Fasciola hepatica, has been cloned, sequenced and recombinantly expressed in Escherichia coli. The protein has a monomeric molecular mass of approximately 28 kDa. Crosslinking and gel filtration experiments demonstrated that the enzyme exists predominantly as a dimer in solution. F. hepatica TPI is predicted to have a ß-barrel structure and key active site residues (Lys-14, His-95 and Glu-165) are conserved. The enzyme shows remarkable stability to both proteolytic degradation and thermal denaturation. The melting temperature, estimated by thermal scanning fluorimetry, was 67 °C and this temperature was increased in the presence of either dihydroxyacetone phosphate or glyceraldehyde 3-phosphate. Kinetic studies showed that F. hepatica TPI demonstrates Michaelis-Menten kinetics in both directions, with Km values for dihydroxyacetone phosphate and glyceraldehyde 3-phosphate of 2.3 mM and 0.66 mM respectively. Turnover numbers were estimated at 25,000 s(-1) for the conversion of dihydroxyacetone phosphate and 1900 s(-1) for the conversion of glyceraldehyde 3-phosphate. Phosphoenolpyruvate acts as a weak inhibitor of the enzyme. F. hepatica TPI has many features in common with mammalian TPI enzymes (e.g. ß-barrel structure, homodimeric nature, high stability and rapid kinetic turnover). Nevertheless, recent successful identification of specific inhibitors of TPI from other parasites, suggests that small differences in structure and biochemical properties could be exploited in the development of novel, species-specific inhibitors.


Assuntos
Fasciola hepatica/enzimologia , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Catálise , Clonagem Molecular , Escherichia coli , Fasciola hepatica/química , Regulação da Expressão Gênica , Cinética , Peso Molecular , Fosfoenolpiruvato/química , Triose-Fosfato Isomerase/antagonistas & inibidores , Triose-Fosfato Isomerase/biossíntese
6.
Parasitol Res ; 112(6): 2413-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23494154

RESUMO

Citrate synthase catalyses the first step of the Krebs' tricarboxylic acid cycle. A sequence encoding citrate synthase from the common liver fluke, Fasciola hepatica, has been cloned. The encoded protein sequence is predicted to fold into a largely α-helical protein with high structural similarity to mammalian citrate synthases. Although a hexahistidine-tagged version of the protein could be expressed in Escherichia coli, it was not possible to purify it by nickel-affinity chromatography. Similar results were obtained with a version of the protein which lacks the putative mitochondrial targeting sequence (residues 1 to 29). However, extracts from bacterial cells expressing this version had additional citrate synthase activity after correcting for the endogenous, bacterial activity. The apparent K m for oxaloacetate was found to be 0.22 mM, which is higher than that observed in mammalian citrate synthases. Overall, the sequence and structure of F. hepatica citrate synthase are similar to ones from other eukaryotes, but there are enzymological differences which merit further investigation.


Assuntos
Citrato (si)-Sintase/metabolismo , Fasciola hepatica/enzimologia , Animais , Cromatografia de Afinidade , Citrato (si)-Sintase/química , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/isolamento & purificação , Clonagem Molecular , DNA de Helmintos/química , DNA de Helmintos/genética , Escherichia coli/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ácido Oxaloacético/metabolismo , Conformação Proteica , Dobramento de Proteína , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...