Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(31): 16874-16879, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34129275

RESUMO

Chalcone isomerase (CHI) is a key enzyme in the biosynthesis of flavonoids in plants. The first bacterial CHI (CHIera ) was identified from Eubacterium ramulus, but its distribution, evolutionary source, substrate scope, and stereoselectivity are still unclear. Here, we describe the identification of 66 novel bacterial CHIs from Genbank using a novel Sequence-Structure-Function-Evolution (SSFE) strategy. These novel bacterial CHIs show diversity in substrate specificity towards various hydroxylated and methoxylated chalcones. The mutagenesis of CHIera according to the substrate binding models of these novel bacterial CHIs resulted in several variants with greatly improved activity towards these chalcones. Furthermore, the preparative scale conversion catalyzed by bacterial CHIs has been performed for five chalcones and revealed (S)-selectivity with up to 96 % ee, which provides an alternative biocatalytic route for the synthesis of (S)-flavanones in high yields.


Assuntos
Eubacterium/enzimologia , Flavanonas/biossíntese , Liases Intramoleculares/metabolismo , Flavanonas/química , Liases Intramoleculares/química , Estrutura Molecular , Especificidade por Substrato
2.
J Biotechnol ; 284: 17-26, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30053500

RESUMO

Cannabinoids are secondary natural products from the plant Cannabis sativaL. Therapeutic indications of cannabinoids currently comprise a significant area of medicinal research. We have expressed the Δ9-tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) recombinantly in Komagataella phaffii and could detect eight different products with a cannabinoid scaffold after conversion of the precursor cannabigerolic acid (CBGA). Besides five products remaining to be identified, both enzymes were forming three major cannabinoids of C. sativa - Δ9-tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA). In pursuit of improved enzyme properties for a biotechnological cannabinoid production, we performed site-directed mutagenesis to investigate the glycosylation pattern, the C-terminal berberine-bridge-enzyme (BBE) domain, the active site and the product specificity of both enzymes. The THCAS variant T_N89Q+N499Q (lacking two glycosylation sites) exerted about two-fold increased activity compared to wild-type enzyme. Variant T_H494C+R532C (additional disulfide bridge) exerted about 1.7-fold increased activity compared to wild-type enzyme and a shifted temperature optimum from 52 °C to 57 °C. We generated two CBDAS variants, C_S116A and C_A414V, with 2.8 and 3.3-fold increased catalytic activities for CBDA production. C_A414V additionally showed a broadened pH spectrum and a 19-fold increased catalytic activity for THCA production. These studies lay the groundwork for further research as well as biotechnological cannabinoid production.


Assuntos
Cannabis/enzimologia , Oxirredutases Intramoleculares , Proteínas de Plantas , Benzoatos/metabolismo , Canabinoides/metabolismo , Catálise , Domínio Catalítico , Dronabinol/metabolismo , Glicólise , Concentração de Íons de Hidrogênio , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Saccharomycetales/genética , Relação Estrutura-Atividade , Temperatura
3.
J Biotechnol ; 272-273: 40-47, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29549004

RESUMO

Δ9-Tetrahydrocannabinolic acid (THCA) is a secondary natural product from the plant Cannabis sativa L. with therapeutic indications like analgesics for cancer pain or reducing spasticity associated with multiple sclerosis. Here, we investigated the influence of the co-expression of 12 helper protein genes from Komagataella phaffii (formerly Pichia pastoris) on the functional expression of the Δ9-tetrahydrocannabinolic acid synthase (THCAS) heterologously expressed in K. phaffii by screening 21 clones of each transformation. Our findings substantiate the necessity of a suitable screening system when interfering with the secretory network of K. phaffii. We found that co-production of the chaperones CNE1p and Kar2p, the foldase PDI1p, the UPR-activator Hac1p as well as the FAD synthetase FAD1p enhanced THCAS activity levels within the K. phaffii cells. The strongest influence showed co-expression of Hac1s - increasing the volumetric THCAS activities 4.1-fold on average. We also combined co-production of Hac1p with the other beneficial helper proteins to further enhance THCAS activity levels. An optimized strain overexpressing Hac1s, FAD1 and CNE1 was isolated that showed 20-fold increased volumetric, intracellular THCAS activity compared to the starting strain. We used this strain for a whole cell bioconversion of cannabigerolic acid (CBGA) to THCA. After 8 h of incubation at 37 °C, the cells produced 3.05 g L-1 THCA corresponding to 12.5% gTHCA gCDW-1.


Assuntos
Benzoatos/metabolismo , Dronabinol/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Pichia/enzimologia , Pichia/genética , Processamento de Proteína Pós-Traducional
4.
J Biotechnol ; 259: 204-212, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694184

RESUMO

Δ9-tetrahydrocannabinolic acid (THCA) is a plant derived secondary natural product from the plant Cannabis satival. The discovery of the human endocannabinoid system in the late 1980s resulted in a growing number of known physiological functions of both synthetic and plant derived cannabinoids. Thus, manifold therapeutic indications of cannabinoids currently comprise a significant area of research. Here we reconstituted the final biosynthetic cannabinoid pathway in yeasts. The use of the soluble prenyltransferase NphB from Streptomyces sp. strain CL190 enables the replacement of the native transmembrane prenyltransferase cannabigerolic acid synthase from C. sativa. In addition to the desired product cannabigerolic acid, NphB catalyzes an O-prenylation leading to 2-O-geranyl olivetolic acid. We show for the first time that the bacterial prenyltransferase and the final enzyme of the cannabinoid pathway tetrahydrocannabinolic acid synthase can both be actively expressed in the yeasts Saccharomyces cerevisiae and Komagataella phaffii simultaneously. While enzyme activities in S. cerevisiae were insufficient to produce THCA from olivetolic acid and geranyl diphosphate, genomic multi-copy integrations of the enzyme's coding sequences in K. phaffii resulted in successful synthesis of THCA from olivetolic acid and geranyl diphosphate. This study is an important step toward total biosynthesis of valuable cannabinoids and derivatives and demonstrates the potential for developing a sustainable and secure yeast bio-manufacturing platform.


Assuntos
Canabinoides/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Redes e Vias Metabólicas , Streptomyces/enzimologia , Streptomyces/genética
5.
Biotechnol Lett ; 37(9): 1869-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25994576

RESUMO

OBJECTIVE: The Δ9-tetrahydrocannabinolic acid synthase (THCAS) from Cannabis sativa was expressed intracellularly in different organisms to investigate the potential of a biotechnological production of Δ9-tetrahydrocannabinolic acid (THCA) using whole cells. RESULTS: Functional expression of THCAS was obtained in Saccharomyces cerevisiae and Pichia (Komagataella) pastoris using a signal peptide from the vacuolar protease, proteinase A. No functional expression was achieved in Escherichia coli. The highest volumetric activities obtained were 98 pkat ml(-1) (intracellular) and 44 pkat ml(-1) (extracellular) after 192 h of cultivation at 15 °C using P. pastoris cells. Low solubility of CBGA prevents the THCAS application in aqueous cell-free systems, thus whole cells were used for a bioconversion of cannabigerolic acid (CBGA) to THCA. Finally, 1 mM (0.36 g THCA l(-1)) THCA could be produced by 10.5 gCDW l(-1) before enzyme activity was lost. CONCLUSION: Whole cells of P. pastoris offer the capability of synthesizing pharmaceutical THCA production.


Assuntos
Benzoatos/metabolismo , Cannabis/enzimologia , Dronabinol/metabolismo , Oxirredutases Intramoleculares/metabolismo , Pichia/genética , Vias Biossintéticas , Cannabis/genética , Sistema Livre de Células , Oxirredutases Intramoleculares/genética , Pichia/química , Pichia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...