Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 7(6): 725-729, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34099902

RESUMO

Recent carbon dioxide (CO2) concentrations promoted higher parthenin concentrations in an invasive Parthenium hysterophorus biotype. Mean concentrations of parthenin, an allelopathic and defensive sesquiterpene lactone, were 49% higher at recent (~400 ppm) than at mid-twentieth-century (~300 ppm) CO2 concentrations, but did not vary in a non-invasive biotype, suggesting that recent increases in atmospheric CO2 may have already altered the chemistry of this destructive weed, potentially contributing to its invasive success.


Assuntos
Asteraceae/metabolismo , Dióxido de Carbono , Plantas Daninhas/metabolismo , Sesquiterpenos/metabolismo , Alelopatia , Asteraceae/fisiologia , Ecótipo , Espécies Introduzidas , Brotos de Planta/metabolismo , Plantas Daninhas/fisiologia , Toxinas Biológicas/metabolismo
2.
Oecologia ; 159(3): 637-47, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19085013

RESUMO

To examine the impact of projected climate changes on secondary succession, we exposed the same fallow soil with a common seed bank to an in situ gradient of urban to rural macroenvironments that differed in temperature and CO2 concentration ([CO2]). This gradient was established at three locations: Baltimore city center (urban), a city park on the outskirts of Baltimore (suburban), and an organic farm 87 km from the Baltimore city center site (rural). Over a five-year period, the urban site averaged 2.1 degrees C warmer and had a [CO2] that was ~20% higher than at the rural location, indicating that this gradient was a reasonable surrogate for projected changes in those variables for this century. Previous work had demonstrated that other abiotic variables measured across the transect, including tropospheric ozone and nitrogen deposition, did not differ consistently. The first year of exposure resulted in (two- to threefold) greater aboveground biomass in the urban relative to the rural site, but with uniform species composition across sites. Simple regression of abiotic variables indicated that temperature and vapor pressure deficit (VPD) were the best predictors of plant biomass among locations. Stepwise multiple regressions were also performed to analyze the effect of more than one macroenvironmental variable on total plant biomass. The combination of daily CO2 concentration and nighttime temperature explained 87% (P < 0.01) of the variability in total biomass between sites. After five years, the species demography of the plant communities had changed significantly, with a greater ratio of perennials to annuals for the urban relative to the rural location. Greater first-year biomass and litter accumulation at the urban site may have suppressed the subsequent seed germination of annual species, accelerating changes in species composition. If urban macroenvironments reflect future global change conditions, these data suggest a faster rate of secondary succession in a warmer, higher [CO2] world.


Assuntos
Clima , Solo , Urbanização , Biomassa , Dióxido de Carbono/análise , Germinação , Maryland , Análise Multivariada , Plantas/classificação , Plantas/embriologia , Análise de Regressão , Especificidade da Espécie , Temperatura
3.
Oecologia ; 139(3): 454-8, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15021982

RESUMO

To examine the impact of climate change on vegetative productivity, we exposed fallow agricultural soil to an in situ temperature and CO2 gradient between urban, suburban and rural areas in 2002. Along the gradient, average daytime CO2 concentration increased by 21% and maximum (daytime) and minimum (nighttime) daily temperatures increased by 1.6 and 3.3 degrees C, respectively in an urban relative to a rural location. Consistent location differences in soil temperature were also ascertained. No other consistent differences in meteorological variables (e.g. wind speed, humidity, PAR, tropospheric ozone) as a function of urbanization were documented. The urban-induced environmental changes that were observed were consistent with most short-term (approximately 50 year) global change scenarios regarding CO2 concentration and air temperature. Productivity, determined as final above-ground biomass, and maximum plant height were positively affected by daytime and soil temperatures as well as enhanced [CO2], increasing 60 and 115% for the suburban and urban sites, respectively, relative to the rural site. While long-term data are needed, these initial results suggest that urban environments may act as a reasonable surrogate for investigating future climatic change in vegetative communities.


Assuntos
Atmosfera/análise , Dióxido de Carbono/análise , Cidades , Clima , Ecossistema , Desenvolvimento Vegetal , Temperatura , Biomassa , Efeito Estufa , Maryland , Ozônio/análise , Análise de Regressão , Estações do Ano
4.
Physiol Plant ; 111(3): 322-328, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11240916

RESUMO

Stimulation of photosynthesis in response to elevated carbon dioxide concentration [CO2] in the short-term (min) should be highly temperature dependent at high photon flux. However, it is unclear if long-term (days, weeks) adaptation to a given growth temperature alters the temperature-dependent stimulation of photosynthesis to [CO2]. In velveltleaf (Albutilon theophrasti), the response of photosynthesis, determined as CO2 assimilation, was measured over a range of internal CO2 concentrations at 7 short-term measurement (12, 16, 20, 24, 28, 32, 36 degrees C) temperatures for each of 4 long-term growth (16, 20, 28 and 32 degrees C) temperatures. In vivo estimates of VCmax, the maximum RuBP saturated rate of carboxylation, and Jmax, the light-saturated rate of potential electron transport, were determined from gas exchange measurements for each temperature combination. Overall, previous exposure to a given growth temperature adjusted the optimal temperatures of Jmax and VCmax with subsequently greater enhancement of photosynthesis at elevated [CO2] (i.e., a greater enhancement of photosynthesis at elevated [CO2] was observed at low measurement temperatures for A. theophrasti grown at low growth temperatures compared with higher growth temperatures, and vice versa for plants grown and measured at high temperatures). Previous biochemical based models used to predict the interaction between rising [CO2] and temperature on photosynthesis have generally assumed no growth temperature effect on carboxylation kinetics or no limitation by Jmax. In the current study, these models over predicted the temperature dependence of the photosynthetic response to elevated [CO2] at temperatures above 24 degrees C. If these models are modified to include long-term adjustments of Jmax and VCmax to growth temperature, then greater agreement between observed and predicted values was obtained.

5.
Plant Physiol ; 99(2): 473-81, 1992 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16668910

RESUMO

Two cultivars of rice (Oryza sativa L.) IR-36 and Fujiyama-5 were grown at ambient (360 microbars) and elevated CO(2) (660 microbars) from germination through reproduction in unshaded greenhouses at the Duke University Phytotron. Growth at elevated CO(2) resulted in significant decreases in nighttime respiration and increases in photosynthesis, total biomass, and yield for both cultivars. However, in plants exposed to simultaneous increases in CO(2) and ultraviolet-B (UV-B) radiation, CO(2) enhancement effects on respiration, photosynthesis, and biomass were eliminated in IR-36 and significantly reduced in Fujiyama-5. UV-B radiation simulated a 25% depletion in stratospheric ozone at Durham, North Carolina. Analysis of the response of CO(2) uptake to internal CO(2) concentration at light saturation suggested that, for IR-36, the predominant limitation to photosynthesis with increased UV-B radiation was the capacity for regeneration of ribulose bisphosphate (RuBP), whereas for Fujiyama-5 the primary photosynthetic decrease appeared to be related to a decline in apparent carboxylation efficiency. Changes in the RuBP regeneration limitation in IR-36 were consistent with damage to the photochemical efficiency of photosystem II as estimated from the ratio of variable to maximum chlorophyll fluorescence. Little change in RuBP regeneration and photochemistry was evident in cultivar Fujiyama-5, however. The degree of sensitivity of photochemical reactions with increased UV-B radiation appeared to be related to leaf production of UV-B-absorbing compounds. Fujiyama-5 had a higher concentration of these compounds than IR-36 in all environments, and the production of these compounds in Fujiyama-5 was stimulated by UV-B fluence. Results from this study suggest that in rice alterations in growth or photosynthesis as a result of enhanced CO(2) may be eliminated or reduced if UV-B radiation continues to increase.

6.
Tree Physiol ; 8(1): 47-57, 1991 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14972896

RESUMO

Measurements were made over four growing seasons of the Na(+) and Cl(-) content of leaves and woody tissues (twigs, branches, trunk and roots) of mature, fruit-bearing Prunus salicina Lindl. (on Marianna 2624 rootstock) trees irrigated during the growing season with water containing 3, 14 or 28 mM salt (2/1 molar ratio of NaCl and CaCl(2)). At the beginning of the study, the trees were 19 years old. Woody tissues of trees irrigated with water containing 14 or 28 mM salt accumulated Na(+) and Cl(-). Leaves of trees irrigated with water containing 14 or 28 mM salt accumulated Cl(-), but not Na(+), unless they had visible symptoms of salt injury. X-Ray microanalysis of leaf mesophyll cells indicated some ability of the cells to sequester Cl(-) in the vacuole. The data demonstrate a capacity for ion compartmentation among tissues and cell organelles in mature Prunus salicina, which may explain the ability of the species to survive low levels of salinity for several years in the field.

7.
Oecologia ; 86(3): 383-389, 1991 May.
Artigo em Inglês | MEDLINE | ID: mdl-28312925

RESUMO

Seedlings of nine tropical species varying in growth and carbon metabolism were exposed to twice the current atmospheric level of CO2 for a 3 month period on Barro Colorado Island, Panama. A doubling of the CO2 concentration resulted in increases in photosynthesis and greater water use efficiency (WUE) for all species possessing C3 metabolism, when compared to the ambient condition. No desensitization of photosynthesis to increased CO2 was observed during the 3 month period. Significant increases in total plant dry weight were also noted for 4 out of the 5 C3 species tested and in one CAM species, Aechmea magdalenae at high CO2. In contrast, no significant increases in either photosynthesis or total plant dry weight were noted for the C4 grass, Paspallum conjugatum. Increases in the apparent quantum efficiency (AQE) for all C3 species suggest that elevated CO2 may increase photosynthetic rate relative to ambient CO2 over a wide range of light conditions. The response of CO2 assimilation to internal Ci suggested a reduction in either the RuBP and/or Pi regeneration limitation with long term exposure to elevated CO2. This experiment suggests that: (1) a global rise in CO2 may have significant effects on photosynthesis and productivity in a wide variety of tropical species, and (2) increases in productivity and photosynthesis may be related to physiological adaptation(s) to increased CO2.

8.
Plant Physiol ; 94(2): 470-5, 1990 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16667735

RESUMO

Wheat (Triticum aestivum L. cv Bannock), rice (Oryza sativa L. cv IR-36), and soybean (Glycine max [L.] Merr cv Essex) were grown in a factorial greenhouse experiment to determine if CO(2)-induced increases in photosynthesis, biomass, and yield are modified by increases in ultraviolet (UV)-B radiation corresponding to stratospheric ozone depletion. The experimental conditions simulated were: (a) an increase in CO(2) concentration from 350 to 650 microliters per liter; (b) an increase in UV-B radiation corresponding to a 10% ozone depletion at the equator; and (c) a and b in combination. Seed yield and total biomass increased significantly with elevated CO(2) in all three species when compared to the control. However, with concurrent increases in UV-B and CO(2), no increase in either seed yield (wheat and rice) or total biomass (rice) was observed with respect to the control. In contrast, CO(2)-induced increases in seed yield and total plant biomass were maintained or increased in soybean within the elevated CO(2), UV-B environment. Whole leaf gas exchange indicated a significant increase in photosynthesis, apparent quantum efficiency (AQE) and water-use-efficiency (WUE) with elevated CO(2) in all 3 species. Including elevated UV-B radiation with high CO(2) eliminated the effect of high CO(2) on photosynthesis and WUE in rice and the increase in AQE associated with high CO(2) in all species. Elevated CO(2) did not change the apparent carboxylation efficiency (ACE) in the three species although the combination of elevated CO(2) and UV-B reduced ACE in wheat and rice. The results of this experiment illustrate that increased UV-B radiation may modify CO(2)-induced increases in biomass, seed yield and photosynthetic parameters and suggest that available data may not adequately characterize the potential effect of future, simultaneous changes in CO(2) concentration and UV-B radiation.

9.
Plant Physiol ; 93(3): 864-70, 1990 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16667594

RESUMO

The response of photosynthetic CO(2) assimilation to salinization in 19 year old Prunus salicina was evaluated under field conditions for a 3 year period. The observed decline in CO(2) assimilation capacity was apparently related to increasing leaf chloride (Cl(-)) content, and independent of changes in leaf carbohydrate status. The response of net CO(2) assimilation (A) to leaf intercellular CO(2) partial pressure (C(i)) indicated that the reduction in the capacity for A with Cl(-) was not the result of decreased stomatal conductance but a consequence of nonstomatal inhibition. The nonstomatal limitations to CO(2) assimilation capacity, as determined by the response of A to C(i) and biochemical assay, were related to a decline in the activity of ribulose 1,5-bisphosphate carboxylase (Rubpcase) and the pool size of triose phosphate, ribulose 1,5-bisphosphate (Rubp) and phosphoglycerate with increasing salinity. Lack of agreement between the initial slope of the A to C(i) response curve and Rubpcase activity suggests the occurrence of heterogeneous stomatal apertures with the high salinity treatment (28 millimolar). Prolonged exposure to chloride salts appeared to increase the Rubp or Pi regeneration limitation, decrease Rubpcase activity and reduce leaf chlorophyll content. Observed changes in the biochemical components of CO(2) fixation may, in turn, affect total leaf carbohydrates, which also declined with time and salinity. The reduction in Rubpcase activity was apparently a consequence of a reduced Rubpcase protein level rather than either a regulatory or inhibitory effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...