Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732426

RESUMO

Prenylated flavonoids (PFs) are natural flavonoids with a prenylated side chain attached to the flavonoid skeleton. They have great potential for biological activities such as anti-diabetic, anti-cancer, antimicrobial, antioxidant, anti-inflammatory, enzyme inhibition, and anti-Alzheimer's effects. Medicinal chemists have recently paid increasing attention to PFs, which have become vital for developing new therapeutic agents. PFs have quickly developed through isolation and semi- or full synthesis, proving their high value in medicinal chemistry research. This review comprehensively summarizes the research progress of PFs, including natural PFs from the Moraceae family and their pharmacological activities. This information provides a basis for the selective design and optimization of multifunctional PF derivatives to treat multifactorial diseases.

2.
Front Plant Sci ; 14: 1155297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968406

RESUMO

The aim of this study was to determine intra- and interspecies variation in the qualitative and quantitative composition of methanol-soluble metabolites in the leaves of three Digitalis species (D. lanata, D. ferruginea, and D. grandiflora) from the central Balkans. Despite the steady use of foxglove constituents for human health as valuable medicinal products, populations of the genus Digitalis (Plantaginaceae) have been poorly investigated to describe their genetic and phenetic variation. Following untargeted profiling using UHPLC-LTQ Orbitrap MS, by which we identified a total of 115 compounds, 16 compounds were quantified using the UHPLC(-)HESI-QqQ-MS/MS approach. In total, 55 steroid compounds, 15 phenylethanoid glycosides, 27 flavonoids, and 14 phenolic acid derivatives were identified across the samples with D. lanata and D. ferruginea showing a great similarity, while 15 compounds were characteristic only for D. grandiflora. The phytochemical composition of methanol extracts, considered here as complex phenotypes, are further examined along multiple levels of biological organization (intra- and interpopulation) and subsequently subjected to chemometric data analysis. The quantitative composition of the selected set of 16 chemomarkers belonging to the classes of cardenolides (3 compounds) and phenolics (13 compounds) pointed to considerable differences between the taxa studied. D. grandiflora and D. ferruginea were found to be richer in phenolics as compared to cardenolides, which otherwise predominate in D. lanata over other compounds. PCA revealed lanatoside C, deslanoside, hispidulin, and p-coumaric acid to be the main compounds contributing to the differences between D. lanata on one side and D. grandiflora and D. ferruginea on the other, while p-coumaric acid, hispidulin, and digoxin contribute to the diversification between D. grandiflora and D. ferruginea. However, quantitative variation in the metabolite content within species was faint with mild population diversification visible in D. grandiflora and particularly in D. ferruginea. This pointed to the highly conserved content and ratio of targeted compounds within the analyzed species, which was not severely influenced by the geographic origin or environmental conditions. The presented metabolomics approach might have, along with morphometrics and molecular genetics studies, a high information value for further elucidation of the relationships among taxa within the genus Digitalis.

3.
Antioxidants (Basel) ; 12(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36829905

RESUMO

The present study provides, for the first time, a physicochemical and biochemical characterization of the redox processes associated with the ripening of Solanum dulcamara L. (bittersweet) berries. Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) measurements of reactive oxygen species (ROS) were performed in parallel with the tissue-specific metabolic profiling of major antioxidants and assessment of antioxidant enzymes activity. Fruit transition from the mature green (MG) to ripe red (RR) stage involved changes in the qualitative and quantitative content of antioxidants and the associated cellular oxidation and peroxidation processes. The skin of bittersweet berries, which was the major source of antioxidants, exhibited the highest antioxidant potential against DPPH radicals and nitroxyl spin probe 3CP. The efficient enzymatic antioxidant system played a critical protective role against the deleterious effects of progressive oxidative stress during ripening. Here, we present the EPRI methodology to assess the redox status of fruits and to discriminate between the redox states of different tissues. Interestingly, the intracellular reoxidation of cell-permeable nitroxide probe 3CP was observed for the first time in fruits or any other plant tissue, and its intensity is herein proposed as a reliable indicator of oxidative stress during ripening. The described noninvasive EPRI technique has the potential to have broader application in the study of redox processes associated with the development, senescence, and postharvest storage of fruits, as well as other circumstances in which oxidative stress is implicated.

4.
Sci Total Environ ; 864: 161194, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581289

RESUMO

In this study, cold atmospheric plasma (CAP) was explored as a novel advanced oxidation process (AOP) for water decontamination. Samples with high concentration aqueous solutions of Diclofenac sodium (DCF) and 4-Chlorobenzoic acid (pCBA) were treated by plasma systems. Atmospheric pressure plasma jets (APPJs) with a 1 pin-electrode and multi-needle electrodes (3 pins) configurations were used. The plasma generated using argon as working gas was touching a stationary liquid surface in the case of pin electrode-APPJ while for multi-needle electrodes-APPJ the liquid sample was flowing during treatment. In both configurations, a commercial RF power supply was used for plasma ignition. Measurement of electrical signals enabled precise determination of power delivered from the plasma to the sample. The optical emission spectroscopy (OES) of plasma confirmed the appearance of excited reactive species in the plasma, such as hydroxyl radicals and atomic oxygen which are considered to be key reactive species in AOPs for the degradation of organic pollutants. Treatments were conducted with two different volumes (5 mL and 250 mL) of contaminated water samples. The data acquired allowed calculation of degradation efficiency and energy yield for both plasma sources. When treated with pin-APPJ, almost complete degradation of 5 mL DCF occurred in 1 min with the initial concentration of 25 mg/L and 50 mg/L, whereas 5 mL pCBA almost degraded in 10 min at the initial concentration of 25 mg/L and 40 mg/L. The treatment results with multi-needle electrodes system confirmed that DCF almost completely degraded in 30 min and pCBA degraded about 24 % in 50 min. The maximum calculated energy yield for 50 % removal was 6465 mg/kWh after treatment of 250 mL of DCF aqueous solution utilizing the plasma recirculation technique. The measurements also provided an insight to the kinetics of DCF and pCBA degradation. Degradation products and pathways for DCF were determined using LC-MS measurements.

5.
Front Plant Sci ; 13: 914138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812935

RESUMO

Secoiridoid glucosides (SGs) are monoterpenoids derived from the iridoid cyclopentane-C-pyran skeleton with ß-D glucose linked at C1 position. Coordinated metabolic processes, such as biosynthesis and catabolism of SGs, ensure constitutive presence of these bitter tasting compounds in plant tissues, which plays a decisive role in the defense against pathogens and herbivores. These compounds are susceptible to hydrolysis mediated by enzymes ß-glucosidases, and the resulting aglycones are subsequently directed toward different metabolic pathways in plants. Function of two ß-D-glucosidases (named CeBGlu1 and CeBGlu2) from centaury (Centaurium erythraea Rafn; fam. Gentianaceae), belonging to the glycoside hydrolase 1 (GH1) family, was confirmed using in vitro assays with recombinant proteins, following their heterologous expression in E. coli and His-tag affinity purification. Although they show slightly differential substrate preference, both isoforms display high specificity toward SGs and the organ-specific distribution of transcripts was positively correlated with the content of SGs in diploid and tetraploid C. erythraea plants. Transient overexpression of CeBGlu1 and CeBGlu2 in C. erythraea leaves induced changes in metabolite profiles. The effectiveness of transgene overexpression has been altered by plant ploidy. UHPLC/DAD/(±)HESI - MS2 profiling of leaves of diploid and tetraploid C. erythraea genotypes revealed that the amounts of major SGs; sweroside, swertiamarin, and gentiopicrin was decreased in agroinfiltrated leaves, especially when CeBGlu1 and CeBGlu2 were co-expressed with transgene silencing suppressor p19. The work demonstrates that in planta metabolic engineering adopting transient overexpression of CeBGlu1 and CeBGlu2 is a suitable tool for the modulation of SGs content and glucosides/aglycones ratio, which might have substantial effects on overall phytochemistry of C. erythraea.

6.
Plants (Basel) ; 11(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406888

RESUMO

Herein, we present the effect of surface dielectric barrier discharge (SDBD) air cold plasma on regrowth of chrysanthemum synthetic seeds (synseeds) and subsequent plantlet development. The plasma system used in this study operates in air at the frequency of 50 Hz. The detailed electrical characterization of SDBD was shown, as well as air plasma emission spectra obtained by optical emission spectroscopy. The chrysanthemum synseeds (encapsulated shoot tips) were treated in air plasma for different treatment times (0, 5 or 10 min). Plasma treatment significantly improved the regrowth and whole plantlet development of chrysanthemum synseeds under aseptic (in vitro) and non-aseptic (ex vitro) conditions. We evaluated the effect of SDBD plasma on synseed germination of four chrysanthemum cultivars after direct sowing in soil. Germination of synseeds directly sowed in soil was cultivar-dependent and 1.6-3.7 fold higher after plasma treatment in comparison with untreated synseeds. The study showed a highly effective novel strategy for direct conversion of simple monolayer alginate chrysanthemum synseeds into entire plantlets by plasma pre-conversion treatment. This treatment reduced contamination and displayed a considerable ex vitro ability to convert clonally identical chrysanthemum plants.

7.
Biology (Basel) ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201481

RESUMO

When exposed to stressful conditions, plants produce numerous volatile organic compounds (VOCs) that have different biological and environmental functions. VOCs emitted during the rehydration process by the fronds of desiccation tolerant fern Asplenium ceterach L. were investigated. Headspace GC-MS analysis revealed that the volatiles profile of rustyback fern is mainly composed of fatty acid derivatives: isomeric heptadienals (over 25%) and decadienals (over 20%), other linear aldehydes, alcohols, and related compounds. Aerial parts of the rustyback fern do not contain monoterpene-type, sesquiterpene-type, and diterpene-type hydrocarbons or corresponding terpenoids. Online detection of VOCs using proton-transfer reaction mass spectrometry (PTR-MS) showed a significant increase in emission intensity of dominant volatiles during the first hours of the rehydration process. Twelve hours after re-watering, emission of detected volatiles had returned to the basal levels that corresponded to hydrated plants. During the early phase of rehydration malondialdehyde (MDA) content in fronds, as an indicator of membrane damage, decreased rapidly which implies that lipoxygenase activity is not stimulated during the recovery process of rustyback fern.

8.
Plants (Basel) ; 10(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445496

RESUMO

Phosphinothricin (PPT) is one of the most widely used herbicides. PTT targets glutamine synthetase (GS) activity in plants, and its phytotoxicity is ascribed to ammonium accumulation and reactive oxygen species bursts, which drives rapid lipid peroxidation of cell membranes. In agricultural fields, PPT is extensively sprayed on plant foliage; however, a portion of the herbicide reaches the soil. According to the present study, PPT absorbed via roots can be phytotoxic to Arabidopsis, inducing more adverse effects in roots than in shoots. Alterations in plant physiology caused by 10 days exposure to herbicide via roots are reflected through growth suppression, reduced chlorophyll content, perturbations in the sugar and organic acid metabolism, modifications in the activities and abundances of GS, catalase, peroxidase, and superoxide dismutase. Antagonistic interaction of Nepeta rtanjensis essential oil (NrEO) and PPT, emphasizes the existence of complex control mechanisms at the transcriptional and posttranslational level, which result in the mitigation of PPT-induced ammonium toxicity and in providing more efficient antioxidant defense of plants. Simultaneous application of the two agents in the field cannot be recommended; however, NrEO might be considered as the PPT post-treatment for reducing harmful effects of herbicide residues in the soil on non-target plants.

9.
Plants (Basel) ; 8(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835780

RESUMO

Centaurium erythraea Rafn produces and accumulates various biologically active specialized metabolites, including secoiridoid glucosides (SGs), which help plants to cope with unfavorable environmental conditions. Specialized metabolism is commonly modulated in a way to increase the level of protective metabolites, such as SGs. Here, we report the molecular background of the wounding-induced changes in SGs metabolism for the first time. The mechanical wounding of leaves leads to a coordinated up-regulation of SGs biosynthetic genes and corresponding JA-related transcription factors (TFs) after 24 h, which results in the increase of metabolic flux through the biosynthetic pathway and, finally, leads to the elevated accumulation of SGs 96 h upon injury. The most pronounced increase in relative expression was detected for secologanin synthase (CeSLS), highlighting this enzyme as an important point for the regulation of biosynthetic flux through the SG pathway. A similar expression pattern was observed for CeBIS1, imposing itself as the TF that is prominently involved in wound-induced regulation of SGs biosynthesis genes. The high degree of positive correlations between and among the biosynthetic genes and targeted TFs expressions indicate the transcriptional regulation of SGs biosynthesis in response to wounding with a significant role of CeBIS1, which is a known component of the jasmonic acid (JA) signaling pathway.

10.
J Plant Physiol ; 237: 87-94, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31034969

RESUMO

Active ingredient of the commercial herbicide BASTA (B), phosphinothricin, acts as an inhibitor of glutamine synthetase (GS), a key enzyme in ammonium assimilation. The treatment with BASTA leads to an elevation of ammonium levels in plants and further to various physiological alterations, ammonium toxicity and lethality. Results of the present study emphasize the complexity underlying control mechanisms that determine BASTA interaction with essential oil (EO) from Nepeta rtanjensis (NrEO), bioherbicide inducing oxidative stress in target plants. Simultaneous application of NrEO and BASTA, two agents showing differential mode of action, suspends BASTA-induced ammonium toxicity in Arabidopsis thaliana plants. This is achieved through maintaining GS activity, which sustains a sub-toxic and/or sub-lethal ammonium concentration in tissues. As revealed by the present study, regulation of GS activity, as influenced by BASTA and NrEO, occurs at transcriptional, posttranscriptional, and/or posttranslational levels. Two genes encoding cytosolic GS, GLN1;1 and GLN1;3, are highlighted as the main isozymes in Arabidopsis shoots contributing to NrEO-induced overcoming of BASTA-generated ammonium toxicity. The effects of NrEO might be ascribed to its major component nepetalactone, but the contribution of minor EO components should not be neglected. Although of fundamental significance, the results of the present study suggest possible low efficiency of BASTA in plantations of medicinal/aromatic plants such as Nepeta species. Furthermore, these results highlight the possibility of using NrEO as a bioherbicide in BASTA-treated crop fields to mitigate the effect of BASTA residues in contaminated soils.


Assuntos
Compostos de Amônio/toxicidade , Arabidopsis/efeitos dos fármacos , Ciclopentanos/farmacologia , Nepeta/química , Óleos Voláteis/farmacologia , Substâncias Protetoras/farmacologia , Pironas/farmacologia , Aminobutiratos/química , Arabidopsis/metabolismo , Monoterpenos Ciclopentânicos , Ciclopentanos/análise , Herbicidas/química , Óleos Voláteis/análise , Substâncias Protetoras/análise , Pironas/análise
11.
Phytochem Anal ; 26(1): 72-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25431035

RESUMO

INTRODUCTION: Nepeta species contain a variety of secondary metabolites, including iridoid monoterpenes - nepetalactones and phenolic acids - that are considered the main bioactive constituents. This work represents the first attempt to comparatively explore variations in these two major groups of secondary metabolites within the genus. OBJECTIVE: To develop an efficient analytical methodology for simultaneous analysis of nepetalactones and phenolic acids in methanol extracts of selected Nepeta species, and to evaluate its potential application in chemotaxonomic studies. MATERIAL AND METHODS: A UHPLC combined with linear-trap quadrupole (LTQ) orbitrap MS method was used to characterise chemical diversity and complexity of phenolics among 12 selected Nepeta species. A targeted metabolomic approach using UHPLC coupled to a diode array detector (DAD) and combined with (+/-) heated electrospray ionisation (HESI) MS/MS was developed and validated for quantitative analysis of six hydroxycinnamic acid derivatives and four nepetalactones. RESULTS: Phenolic profiling provided a valuable database of bioactive compounds in the plant group studied, including phenolic acids (hydroxybenzoic and hydroxycinnamic acids) and flavonoids (flavones, flavonols and flavanones). Principal component analysis and cluster analysis suggested the applicability of 10 targeted compounds as chemomarkers for chemotaxonomic studies. Pearson's correlation analysis revealed significant positive correlations between metabolites involved in different biosynthetic pathways (phenylpropanoid or monoterpenoid). CONCLUSION: The described targeted metabolomic approach proved to be highly beneficial in designing a phytochemical overview of the genus Nepeta, and might have applications in further clarification of phylogenetic relations. Furthermore, it has the potential to be implemented in a routine quality control of plant material and herbal preparations.


Assuntos
Ciclopentanos/análise , Flavonoides/análise , Hidroxibenzoatos/análise , Nepeta/química , Fenóis/análise , Extratos Vegetais/análise , Pironas/análise , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Monoterpenos Ciclopentânicos , Ciclopentanos/química , Ciclopentanos/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação , Metabolômica , Metanol , Estrutura Molecular , Fenóis/química , Fenóis/isolamento & purificação , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Pironas/química , Pironas/isolamento & purificação , Espectrometria de Massas em Tandem
12.
Food Chem ; 147: 367-76, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24206732

RESUMO

Methanol extracts of aerial parts and roots of five centaury species (Centaurium erythraea, C. tenuiflorum, C. littorale ssp. uliginosum, C. pulchellum, and Schenkia spicata) were analysed for their main secondary metabolites: secoiridoid glycosides, a group of monoterpenoid compounds, and phenolics (xanthones and flavonoids), and further investigated for antioxidant capacity and antimicrobial activity. The results of ABTS, DPPH, and FRAP assays showed that above ground parts generally displayed up to 13 times higher antioxidant activity compared to roots, which should be related to higher phenolics content, especially flavonoids, in green plant organs. Secoiridoid glycosides showed no antioxidant activity. All the tested extracts demonstrated appreciative antibacterial (0.05-0.5 mg ml(-1)) and strong antifungal activity (0.1-0.6 mg ml(-1)). Our results imply that above ground parts of all centaury species studied, could be recommended for human usage as a rich source of natural antioxidants and also in food industry as strong antimicrobial agents for food preservation.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Centaurium/química , Aditivos Alimentares/farmacologia , Extratos Vegetais/farmacologia , Anti-Infecciosos/química , Antioxidantes/química , Bactérias/efeitos dos fármacos , Aditivos Alimentares/química , Fungos/efeitos dos fármacos , Extratos Vegetais/química , Raízes de Plantas/química
13.
J Plant Physiol ; 169(12): 1203-11, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22749286

RESUMO

We investigated Chenopodium murale transgenic hairy root in vitro culture system as a new tool for allelopathic assays. Transgenic hairy roots were induced by Agrobacterium rhizogenes A4M70GUS from roots, cotyledons, leaves, and internodes of C. murale seedlings. Roots were found to be the best target explants, providing transformation efficiency of up to 11.1%. Established hairy root clones differed in their morphology and growth potential. Molecular characterization of these clones was carried out by PCR, RT-PCR and histochemical GUS analyses. No differences in rol gene expression were observed. Liquid culture system of characterized hairy root clones was maintained for over 2 years. Six hairy root clones were selected for assaying the allelopathic effect of their growth medium against germination and seedling elongation of wheat and lettuce test plants. The inhibitory potential varied depending on the hairy root clone. Some transgenic clones showed significantly higher inhibition compared to wild-type roots. These results revealed that hairy roots as an independent system synthesize some bioactive substances with allelopathic activity and exude them into the growth medium. Concentrations of caffeic, ferulic and p-coumaric acids (0.07-2.85 µmol/L) identified by HPLC analysis in the growth media were at least 1000 times lower than the inhibitory active concentration (5 mmol/L) of pure grade phenolic acids, suggesting that they have a limited role in the allelopathic phenomena of C. murale. The presented hairy root system appears to be a suitable tool for further investigation of the potential and nature of root-mediated allelopathic interference of C. murale.


Assuntos
Chenopodium/química , Chenopodium/citologia , Técnicas de Cultura/métodos , Feromônios/análise , Raízes de Plantas/química , Raízes de Plantas/citologia , Agrobacterium , Chenopodium/genética , Células Clonais , Cotilédone , Meios de Cultura , Regulação da Expressão Gênica de Plantas , Variação Genética , Folhas de Planta , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Plântula , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...