Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J C Part Fields ; 82(2): 121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35210938

RESUMO

We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function typical of particle physics, a Punzi-loss function, and the neural network that utilises this loss function a Punzi-net. We show that the Punzi-net outperforms standard multivariate analysis techniques and generalises well to mass hypotheses for which it was not trained. This is achieved by training a single classifier that provides a coherent and optimal classification of all signal hypotheses over the whole search space. Our result constitutes a complementary approach to fully differentiable analyses in particle physics. We implemented this work using PyTorch and provide users full access to a public repository containing all the codes and a training example.

2.
Eur Phys J C Part Fields ; 78(7): 538, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30393461

RESUMO

Hard processes in diffractive deep-inelastic scattering can be described by a factorisation into parton-level subprocesses and diffractive parton distributions. In this framework, cross sections for inclusive dijet production in diffractive deep-inelastic electron-proton scattering (DIS) are computed to next-to-next-to-leading order (NNLO) QCD accuracy and compared to a comprehensive selection of data. Predictions for the total cross sections, 40 single-differential and four double-differential distributions for six measurements at HERA by the H1 and ZEUS collaborations are calculated. In the studied kinematical range, the NNLO corrections are found to be sizeable and positive. The NNLO predictions typically exceed the data, while the kinematical shape of the data is described better at NNLO than at next-to-leading order (NLO). A significant reduction of the scale uncertainty is achieved in comparison to NLO predictions. Our results use the currently available NLO diffractive parton distributions, and the discrepancy in normalisation highlights the need for a consistent determination of these distributions at NNLO accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...