Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(20): 7641-7649, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35548860

RESUMO

Single-atom catalysts represent an intense topic of research due to their interesting catalytic properties for a wide range of reactions. Clarifying the nature of the active sites of single-atom catalysts under realistic working conditions is of paramount importance for the design of performant materials. We have prepared an Ir single-atom catalyst supported on a nitrogen-rich carbon substrate that has proven to exhibit substantial activity toward the hydrogenation of butadiene with nearly 100% selectivity to butenes even at full conversion. We evidence here, by quantitative operando X-ray absorption spectroscopy, that the initial Ir single atoms are coordinated with four light atoms i.e., Ir-X4 (X = C/N/O) with an oxidation state of +3.2. During pre-treatment under hydrogen flow at 250 °C, the Ir atom loses one neighbour (possibly oxygen) and partially reduces to an oxidation state of around +2.0. We clearly demonstrate that Ir-X3 (X = C/N/O) is an active species with very good stability under reactive conditions. Moreover, Ir single atoms remain isolated under a reducing atmosphere at a temperature as high as 400 °C.

2.
Nanoscale ; 6(17): 9955-9, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25059734

RESUMO

The hydrogen sorption properties of oxide-supported Ir-Pd nanoalloys have been determined for the first time, and correlated with their catalytic behavior. The addition of Ir to Pd suppresses hydride formation and leads to improved catalytic performances with respect to pure metals in the preferential oxidation of CO in H2 excess (PROX).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...