Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 116(25): 6851-69, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22568547

RESUMO

We have studied glutathionylcobalamin (GS-Cbl) by optical spectroscopy and with density functional theory (DFT) and time-dependent DFT (TD-DFT) electronic structure methods of truncated geometric models. We examined the geometric structure of the models by comparison of DFT calculations with recent high-resolution experimental X-ray structure data ( Hannibal, L. et al. Inorg. Chem. 2010, 49, 9921) for GS-Cbl, and we examined the TD-DFT excitation simulations by comparison of the models with measured optical spectra. The calculations employed the B3LYP hybrid functional and the nonhybrid BP86 functional in both vacuum and water (conductor polarized continuum model (cpcm)) with the 6-311G(d,p) basis set. The optimized geometric structure calculations for six truncated models were made by varying the chemical structure, solvent model, and the two DFT functionals. All showed similar geometry. Charge decomposition analysis (CDA) and extended charge decomposition analysis (ECDA), especially with BP86 shows the similar charge transfer nature of the Co-S bond in GS-Cbl and the Co-C bond in CH(3)Cbl. Mayer and Wiberg bond orders illustrate the similar covalent nature of the two bonds. Finally, absolute optical spectral simulation calculations were compared with the experimental UV-visible extinction spectrum and the electronic circular dichroism (ECD) differential extinction spectrum. The BP86 method shows more spectral features, and the best fit was found for a GS-Cbl model with 5,6-dimethylbenzimidazole at the BP86/6-311G(d,p) level with a water cpcm solvent model. The excited state transitions were investigated with Martin's natural transition orbitals (NTOs). The BP86 calculations also showed π bonding interactions between Co and the axial S of the GS- ligand in the molecular orbitals (MOs) and NTOs.


Assuntos
Glutationa/análogos & derivados , Teoria Quântica , Vitamina B 12/análogos & derivados , Glutationa/química , Conformação Molecular , Espectrofotometria Ultravioleta , Vitamina B 12/química
2.
Biochim Biophys Acta ; 1768(5): 1218-29, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17336921

RESUMO

A series of ab initio (density functional) calculations were carried out on side chains of a set of amino acids, plus water, from the (intracellular) gating region of the KcsA K(+) channel. Their atomic coordinates, except hydrogen, are known from X-ray structures [D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, The structure of the potassium channel: molecular basis of K(+) conduction and selectivity, Science 280 (1998) 69-77; R. MacKinnon, S.L. Cohen, A. Kuo, A. Lee, B.T. Chait, Structural conservation in prokaryotic and eukaryotic potassium channels, Science 280 (1998) 106-109; Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon, The open pore conformation of potassium channels. Nature 417 (2001) 523-526], as are the coordinates of some water oxygen atoms. The 1k4c structure is used for the starting coordinates. Quantum mechanical optimization, in spite of the starting configuration, places the atoms in positions much closer to the 1j95, more tightly closed, configuration. This state shows four water molecules forming a "basket" under the Q119 side chains, blocking the channel. When a hydrated K(+) approaches this "basket", the optimized system shows a strong set of hydrogen bonds with the K(+) at defined positions, preventing further approach of the K(+) to the basket. This optimized structure with hydrated K(+) added shows an ice-like 12 molecule nanocrystal of water. If the water molecules exchange, unless they do it as a group, the channel will remain blocked. The "basket" itself appears to be very stable, although it is possible that the K(+) with its hydrating water molecules may be more mobile, capable of withdrawing from the gate. It is also not surprising that water essentially freezes, or forms a kind of glue, in a nanometer space; this agrees with experimental results on a rather different, but similarly sized (nm dimensions) system [K.B. Jinesh, J.W.M. Frenken, Capillary condensation in atomic scale friction: how water acts like a glue, Phys. Rev. Lett. 96 (2006) 166103/1-4]. It also agrees qualitatively with simulations on channels [A. Anishkin, S. Sukharev, Water dynamics and dewetting transitions in the small mechanosensitive channel MscS, Biophys. J. 86 (2004) 2883-2895; O. Beckstein, M.S.P. Sansom, Liquid-vapor oscillations of water in hydrophobic nanopores, Proc. Natl Acad. Sci. U. S. A. 100 (2003) 7063-7068] and on featureless channel-like systems [J. Lu, M.E. Green, Simulation of water in a pore with charges: application to a gating mechanism for ion channels, Prog. Colloid Polym. Sci. 103 (1997) 121-129], in that it forms a boundary on water that is not obvious from the liquid state. The idea that a structure is stable, even if individual molecules exchange, is well known, for example from the hydration shell of ions. We show that when charges are added in the form of protons to the domains (one proton per domain), the optimized structure is open. No stable water hydrogen bonds hold it together; an opening of 11.0 A appears, measured diagonally between non-neighboring domains as glutamine 119 carbonyl O-O distance. This is comparable to the opening in the MthK potassium channel structure that is generally agreed to be open. The appearance of the opening is in rather good agreement with that found by Perozo and coworkers. In contrast, in the uncharged structure this diagonal distance is 6.5 A, and the water "basket" constricts the uncharged opening still further, with the ice-like structure that couples the K(+) ion to the gating region freezing the entrance to the channel. Comparison with our earlier model for voltage gated channels suggests that a similar mechanism may apply in those channels.


Assuntos
Ativação do Canal Iônico , Modelos Químicos , Canais de Potássio/química , Teoria Quântica , Ligação de Hidrogênio , Canais de Potássio/metabolismo , Conformação Proteica , Eletricidade Estática , Água
3.
J Chem Theory Comput ; 3(1): 103-114, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19169381

RESUMO

Water molecules in clefts and small clusters are in a significantly different environment than in bulk water. We have carried out ab initio calculations that demonstrate this in a series of clusters, showing that cooperative effects must be taken into account in the treatment of hydrogen bonds and water clusters in such bounded systems. Hydrogen bonds between water molecules in simulations are treated most frequently by using point charge water potentials, such as TIP3P or SPC, sometimes with a polarizable extension. These produce excellent results in bulk water, for which they are calibrated. Clefts are different from bulk; it is necessary to look at smaller systems, and investigate the effect of limited numbers of neighbors. We start with a study of isolated clusters of water with varying numbers of neighbors of a hydrogen bonded pair of water molecules. The cluster as a whole is in vacuum. The clusters are defined so as to provide the possible arrangements of nearest neighbors of a central hydrogen bonded pair of water molecules. We then scan the length and angles of the central hydrogen bond of the clusters, using density functional theory, for each possible arrangement of donor and acceptor hydrogen bonds on the central hydrogen bonding pair; the potential of interaction of two water molecules varies with the number of donor and of acceptor neighbors. This also involves changes in charge on the water molecules as a function of bond length, and changes in energy and length as a function of number of neighboring donor and acceptor molecules. Energy varies by approximately 6 k(B)T near room temperature from the highest to the lowest energy when bond length alone is varied, enough to seriously affect simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...