Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35624804

RESUMO

Neutrophils are important cellular mediators of injury and repair in diseases including ischemic heart disease, atherosclerosis, and sepsis. Myeloperoxidase-derived (MPO)-oxidants released from neutrophils are potential mediators of endothelial injury in disease. MPO-derived HOCl attacks plasmalogen phospholipid to liberate 2-chlorofatty aldehyde (2-ClFALD). Both 2-ClFALD and its oxidation product, 2-chlorofatty acid (2-ClFA), are electrophilic lipids, and both probably react with proteins through several mechanisms. In the present study, we investigate protein modification specifically by 2-ClFALD under non-reducing conditions (e.g., without stabilizing Schiff base bonds), which likely reflects nucleophilic targeting of the electrophilic chlorinated carbon. Protein modification by the ω-alkyne analog of 2-chlorohexadecanal (2-ClHDA), 2-ClHDyA, was compared to that with the ω-alkyne analog of 2-chlorohexadecanoic acid (2-ClHA), 2-ClHyA, in multiple cell lines, which demonstrated 2-ClFALD preferentially modifies proteins compared to 2-ClFA. The 2-ClHDyA modified proteins from EA.hy926 cells and human lung microvascular endothelial cells analyzed by shotgun proteomics and over-representation analysis included adherens junction, cell adhesion molecule binding, and cell substrate junction enrichment categories. It is possible that proteins in these groups may have roles in previously described 2-ClFALD-elicited endothelial barrier dysfunction.

2.
Front Cell Dev Biol ; 8: 855, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042986

RESUMO

Plasmalogens are a subclass of ether glycerophospholipids characterized by a vinyl-ether bond at the sn-1 position of the glycerol backbone. Plasmalogen biosynthesis is initiated in peroxisomes. At the third step of plasmalogen synthesis, alkyl-dihydroxyacetonephosphate (DHAP) is enzymatically reduced to 1-alkyl-sn-glycero-3-phospate by acyl/alkyl DHAP reductase (ADHAPR), whose activity is found in both peroxisomes and microsomes. We herein show that knockdown of ADHAPR in HeLa cells reduced the synthesis of ethanolamine plasmalogen (PlsEtn), similar to the Chinese hamster ovary cell mutant FAA.K1B deficient in ADHAPR activity. Endogenous ADHAPR and ectopically expressed FLAG-tagged ADHAPR were localized to peroxisomes and endoplasmic reticulum (ER) as a type I integral membrane protein in HeLa cells. ADHAPR targets to peroxisomes via a Pex19p-dependent class I pathway. In addition, it is also inserted into the ER via the SRP-dependent mechanism. The ADHAPR mutant lacking the N-terminal domain preferentially targets to the ER, restoring the reduced level of PlsEtn synthesis in FAA.K1B cell. In contrast, the expression of full-length ADHAPR in the mutant cells elevates the synthesis of phosphatidylethanolamine, but not PlsEtn. Taken together, these results suggest that the third step of plasmalogen synthesis is mediated by ER-localized ADHAPR.

3.
Proc Natl Acad Sci U S A ; 117(14): 7792-7798, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209662

RESUMO

A significant fraction of the glycerophospholipids in the human body is composed of plasmalogens, particularly in the brain, cardiac, and immune cell membranes. A decline in these lipids has been observed in such diseases as Alzheimer's and chronic obstructive pulmonary disease. Plasmalogens contain a characteristic 1-O-alk-1'-enyl ether (vinyl ether) double bond that confers special biophysical, biochemical, and chemical properties to these lipids. However, the genetics of their biosynthesis is not fully understood, since no gene has been identified that encodes plasmanylethanolamine desaturase (E.C. 1.14.99.19), the enzyme introducing the crucial alk-1'-enyl ether double bond. The present work identifies this gene as transmembrane protein 189 (TMEM189). Inactivation of the TMEM189 gene in human HAP1 cells led to a total loss of plasmanylethanolamine desaturase activity, strongly decreased plasmalogen levels, and accumulation of plasmanylethanolamine substrates and resulted in an inability of these cells to form labeled plasmalogens from labeled alkylglycerols. Transient expression of TMEM189 protein, but not of other selected desaturases, recovered this deficit. TMEM189 proteins contain a conserved protein motif (pfam10520) with eight conserved histidines that is shared by an alternative type of plant desaturase but not by other mammalian proteins. Each of these histidines is essential for plasmanylethanolamine desaturase activity. Mice homozygous for an inactivated Tmem189 gene lacked plasmanylethanolamine desaturase activity and had dramatically lowered plasmalogen levels in their tissues. These results assign the TMEM189 gene to plasmanylethanolamine desaturase and suggest that the previously characterized phenotype of Tmem189-deficient mice may be caused by a lack of plasmalogens.


Assuntos
Lipídeos/genética , Oxirredutases/genética , Plasmalogênios/genética , Enzimas de Conjugação de Ubiquitina/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Linhagem Celular , Humanos , Camundongos , Oxirredução , Oxirredutases/metabolismo , Fenótipo , Plasmalogênios/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Compostos de Vinila/metabolismo
4.
Biochem Biophys Rep ; 18: 100621, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30899803

RESUMO

Inhibition of animal cell phospholipid biosynthesis has been proposed for anticancer and antiviral therapies. Using CHO-K1 derived cell lines, we have developed and used a cell-based high-throughput procedure to screen a 1280 compound, small molecule library for inhibitors of phospholipid biosynthesis. We identified tyrphostin AG 879 (AG879), which inhibited phospholipid biosynthesis by 85-90% at a concentration of 10 µM, displaying an IC50 of 1-3 µM. The synthesis of all phospholipid head group classes was heavily affected. Fatty acid biosynthesis was also dramatically inhibited (90%). AG879 inhibited phospholipid biosynthesis in all additional cell lines tested, including MDCK, HUH7, Vero, and HeLa cell lines. In CHO cells, AG879 was cytostatic; cells survived for at least four days during exposure and were able to divide following its removal. AG879 is an inhibitor of receptor tyrosine kinases (RTK) and inhibitors of signaling pathways known to be activated by RTK's also inhibited phospholipid biosynthesis. We speculate that inhibition of RTK by AG879 results in an inhibition of fatty acid biosynthesis with a resulting decrease in phospholipid biosynthesis and that AG879's effect on fatty acid synthesis and/or phospholipid biosynthesis may contribute to its known capacity as an effective antiviral/anticancer agent.

5.
J Lipid Res ; 59(5): 901-909, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29540573

RESUMO

Plasmanylethanolamine desaturase (PEDS) (EC 1.14.99.19) introduces the 1-prime double bond into plasmalogens, one of the most abundant phospholipids in the human body. This labile membrane enzyme has not been purified and its coding sequence is unknown. Previous assays for this enzyme used radiolabeled substrates followed by multistep processing. We describe here a straight-forward method for the quantification of PEDS in enzyme incubation mixtures using pyrene-labeled substrates and reversed-phase HPLC with fluorescence detection. After stopping the reaction with hydrochloric acid in acetonitrile, the mixture was directly injected into the HPLC system without the need of lipid extraction. The substrate, 1-O-pyrenedecyl-2-acyl-sn-glycero-3-phosphoethanolamine, and the lyso-substrate, 1-O-pyrenedecyl-sn-glycero-3-phosphoethanolamine, were prepared from RAW-12 cells deficient in PEDS activity and were compared for their performance in the assay. Plasmalogen levels in mouse tissues and in cultured cells did not correlate with PEDS levels, indicating that the desaturase might not be the rate limiting step for plasmalogen biosynthesis. Among selected mouse organs, the highest activities were found in kidney and in spleen. Incubation of intact cultivated mammalian cells with 1-O-pyrenedecyl-sn-glycerol, extraction of lipids, and treatment with hydrochloric or acetic acid in acetonitrile allowed sensitive monitoring of PEDS activity in intact cells.


Assuntos
Cromatografia Líquida de Alta Pressão , Oxirredutases/análise , Plasmalogênios/química , Pirenos/química , Espectrometria de Fluorescência , Compostos de Vinila/química , Animais , Células Cultivadas , Camundongos , Estrutura Molecular , Oxirredutases/deficiência , Oxirredutases/metabolismo , Plasmalogênios/biossíntese , Pirenos/metabolismo , Especificidade por Substrato , Compostos de Vinila/metabolismo
6.
Mol Cell ; 46(4): 461-71, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22633490

RESUMO

Sphingosine 1-phosphate (S1P) functions not only as a bioactive lipid molecule, but also as an important intermediate of the sole sphingolipid-to-glycerolipid metabolic pathway. However, the precise reactions and the enzymes involved in this pathway remain unresolved. We report here that yeast HFD1 and the Sjögren-Larsson syndrome (SLS)-causative mammalian gene ALDH3A2 are responsible for conversion of the S1P degradation product hexadecenal to hexadecenoic acid. The absence of ALDH3A2 in CHO-K1 mutant cells caused abnormal metabolism of S1P/hexadecenal to ether-linked glycerolipids. Moreover, we demonstrate that yeast Faa1 and Faa4 and mammalian ACSL family members are acyl-CoA synthetases involved in the sphingolipid-to-glycerolipid metabolic pathway and that hexadecenoic acid accumulates in Δfaa1 Δfaa4 mutant cells. These results unveil the entire S1P metabolic pathway: S1P is metabolized to glycerolipids via hexadecenal, hexadecenoic acid, hexadecenoyl-CoA, and palmitoyl-CoA. From our results we propose a possibility that accumulation of the S1P metabolite hexadecenal contributes to the pathogenesis of SLS.


Assuntos
Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Lisofosfolipídeos/metabolismo , Síndrome de Sjogren-Larsson/genética , Síndrome de Sjogren-Larsson/metabolismo , Esfingosina/análogos & derivados , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Animais , Células CHO , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Cricetinae , Cricetulus , Genes Fúngicos , Humanos , Redes e Vias Metabólicas , Mutação , Ácidos Palmíticos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Síndrome de Sjogren-Larsson/etiologia , Esfingosina/metabolismo
7.
PLoS One ; 7(4): e34904, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22493722

RESUMO

In obesity, there is an increase in reactive oxygen species (ROS) within adipose tissue caused by increases in inflammation and overnutrition. Hormone sensitive lipase (HSL) is part of the canonical lipolytic pathway and critical for complete lipolysis. This study hypothesizes that ROS is a signal that integrates regulation of lipolysis by targeting HSL. Experiments were performed with human differentiated adipocytes from the subcutaneous depot. Antioxidants were employed as a tool to decrease ROS, and it was found that scavenging ROS with diphenyliodonium, N-acetyl cysteine, or resveratrol decreased lipolysis in adipocytes. HSL phosphorylation of a key serine residue, Ser552, as well as translocation of this enzyme from the cytosol to the lipid droplet upon lipolytic stimulation were both abrogated by scavenging ROS. The phosphorylation status of other serine residues on HSL were not affected. These findings are significant because they document that ROS contributes to the physiological regulation of lipolysis via an effect on translocation. Such regulation could be useful in developing new obesity therapies.


Assuntos
Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Esterol Esterase/metabolismo , Acetilcisteína/farmacologia , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Antioxidantes/farmacologia , Compostos de Bifenilo/farmacologia , Colforsina/efeitos adversos , Feminino , Humanos , Lipídeos/química , Lipólise/efeitos dos fármacos , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/patologia , Oniocompostos/farmacologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Resveratrol , Serina/metabolismo , Estilbenos/farmacologia
8.
Biochim Biophys Acta ; 1812(11): 1393-402, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21787864

RESUMO

Inherited glucose-6-phosphate isomerase (GPI) deficiency is the second most frequent glycolytic erythroenzymopathy in humans. Patients present with non-spherocytic anemia of variable severity and with neuromuscular dysfunction. We previously described Chinese hamster (CHO) cell lines with mutations in GPI and loss of GPI activity. This resulted in a temperature sensitivity and severe reduction in the synthesis of glycerolipids due to a reduction in phosphatidate phosphatase (PAP). In the current article we attempt to describe the nature of this pleiotropic effect. We cloned and sequenced the CHO lipin 1 cDNA, a gene that codes for PAP activity. Overexpression of lipin 1 in the GPI-deficient cell line, GroD1 resulted in increased PAP activity, however it failed to restore glycerolipid biosynthesis. Fluorescence microscopy showed a failure of GPI-deficient cells to localize lipin 1α to the nucleus. We also found that glucose-6-phosphate levels in GroD1 cells were 10-fold over normal. Lowering glucose levels in the growth medium partially restored glycerolipid biosynthesis and nuclear localization of lipin 1α. Western blot analysis of the elements within the mTOR pathway, which influences lipin 1 activity, was consistent with an abnormal activation of this system. Combined, these data suggest that GPI deficiency results in an accumulation of glucose-6-phosphate, and possibly other glucose-derived metabolites, leading to activation of mTOR and sequestration of lipin 1 to the cytosol, preventing its proper functioning. These results shed light on the mechanism underlying the pathologies associated with inherited GPI deficiency and the variability in the severity of the symptoms observed in these patients.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/etiologia , Núcleo Celular/metabolismo , Glucose-6-Fosfato Isomerase/metabolismo , Glucose/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Células CHO , Clonagem Molecular , Cricetinae , Ensaio de Desvio de Mobilidade Eletroforética , Frutosefosfatos/metabolismo , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato Isomerase/genética , Glicolipídeos , Microscopia de Fluorescência , Dados de Sequência Molecular , Compostos Orgânicos/metabolismo , Fosfatidato Fosfatase/metabolismo , Transporte Proteico , Homologia de Sequência de Aminoácidos
9.
J Biol Chem ; 285(2): 866-77, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19903819

RESUMO

Glycerolipids are structural components for membranes and serve in energy storage. We describe here the use of a photodynamic selection technique to generate a population of Chinese hamster ovary cells that display a global deficiency in glycerolipid biosynthesis. One isolate from this population, GroD1, displayed a profound reduction in the synthesis of phosphatidylcholine, phosphatidylethanolamine, and triglycerides but presented high levels of phosphatidic acid and normal levels of phosphatidylinositol synthesis. This was accompanied by a reduction in phosphatidate phosphatase 1 (PAP1) activity. Expression cloning and sequencing of the cDNA obtained from GroD1 revealed a point mutation, Gly-189 --> Glu, in glucose-6-phosphate isomerase (GPI), a glycolytic enzyme involved in an inherited disorder that results in anemia and neuromuscular symptoms in humans. GPI activity was reduced by 87% in GroD1. No significant differences were found in DNA synthesis, protein synthesis, and ATP levels, whereas glycerol 3-phosphate levels were increased in the mutant. Expression of wild-type hamster GPI restored GPI activity, glycerolipid biosynthesis, and PAP1 activity in GroD1. Two additional, independently isolated GPI-deficient mutants displayed similar phenotypes with respect to PAP1 activity and glycerolipid biosynthesis. These findings uncover a novel relationship between GPI, involved in carbohydrate metabolism, and PAP1, a lipogenic enzyme. These results may also help to explain neuromuscular symptoms associated with inherited GPI deficiency.


Assuntos
Glucose-6-Fosfato Isomerase/metabolismo , Fosfolipídeos/biossíntese , Triglicerídeos/biossíntese , Anemia/enzimologia , Anemia/genética , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Células CHO , Cricetinae , Cricetulus , Glucose-6-Fosfato Isomerase/genética , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/genética , Doenças Neuromusculares/enzimologia , Doenças Neuromusculares/genética , Proteínas Associadas a Pancreatite , Fosfolipídeos/genética , Mutação Puntual , Triglicerídeos/genética
10.
J Lipid Res ; 51(5): 1085-92, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20019386

RESUMO

Neutrophils are important in the host response against invading pathogens. One chemical defense mechanism employed by neutrophils involves the production of myeloperoxidase (MPO)-derived HOCl. 2-Chlorohexadecanal (2-ClHDA) is a naturally occurring lipid product of HOCl targeting the vinyl ether bond of plasmalogens. Previous studies have shown that exogenously-added 2-ClHDA is oxidized to 2-chlorohexadecanoic acid (2-ClHA) and reduced to 2-chlorohexadecanol (2-ClHOH) by endothelial cells. These studies show that both 2-ClHA and 2-ClHOH are produced in activated neutrophils in an MPO- and time-dependent manner and are released by neutrophils into media. 2-ClHDA levels peak following 30 min of phorbol 12-myristate-13-acetate stimulation. In contrast, 2-ClHA and 2-ClHOH levels steadily increased over 60 min, suggesting a precursor-product relationship between 2-ClHDA and both 2-ClHA and 2-ClHOH. Additional experiments using wild-type CHO.K1 and CHO.K1 cells deficient in fatty aldehyde dehydrogenase (FALDH), FAA.K1A, demonstrated that 2-ClHDA oxidation to 2-ClHA is dependent on FALDH activity. Furthermore, mice exposed to intranasal Sendai virus displayed lung neutrophil recruitment, as well as elevated 2-ClHA levels in plasma and bronchoalveolar lavage compared with control-treated mice. Taken together, these data demonstrate, for the first time, that metabolites of 2-ClHDA are produced both in vivo as well as in isolated human neutrophils.


Assuntos
Aldeídos/imunologia , Aldeídos/metabolismo , Halogenação , Metabolismo dos Lipídeos/imunologia , Neutrófilos/imunologia , Animais , Lavagem Broncoalveolar , Células CHO , Cricetinae , Cricetulus , Álcoois Graxos/metabolismo , Humanos , Camundongos , Neutrófilos/metabolismo , Ésteres de Forbol/farmacologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia
11.
Biochim Biophys Acta ; 1781(4): 213-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18328831

RESUMO

We examined the dependence of stimulated arachidonic acid release on plasmalogens using the murine, macrophage cell line 264.7 and two plasmalogen-deficient variants, RAW.12 and RAW.108. All three strains responded to unopsinized zymosan to release arachidonic acid from phospholipid stores. Arachidonic acid release appeared to be dependent on calcium-independent phospholipase A(2) activation (iPLA(2)); bromoenol lactone, a specific inhibitor of calcium-independent iPLA(2), blocked arachidonic acid release with an IC(50) of approximately 2 x 10(-7)M. Propanolol, an inhibitor of phosphatidate phosphatase, and RHC-80267, an inhibitor of diglyceride lipase, had no effect on arachidonic acid release. Arachidonic acid release in the variants displayed similar magnitude, kinetics of response and sensitivity to the inhibitors when compared to the parent strain. Arachidonic acid was released from all major phospholipid head group classes with the exception of sphingomyelin. In wild-type cells, arachidonic acid released from the ethanolamine phospholipids was primarily from the plasmalogen form. However, in the plasmalogen-deficient cells release from the diacyl species, phosphatidylethanolamine, was increased to compensate. Restoration of plasmalogens by supplementation of the growth medium with the bypass compounds sn-1-hexadecylglycerol and sn-1-alkenylglycerol had no effect on arachidonic acid release. In summary, plasmalogen status appears to have no influence on the zymosan A stimulated release of arachidonic acid from the RAW 264.7 cell line.


Assuntos
Ácido Araquidônico/metabolismo , Macrófagos/metabolismo , Plasmalogênios/farmacologia , Animais , Linhagem Celular , Macrófagos/efeitos dos fármacos , Camundongos , Naftalenos/farmacologia , Inibidores de Fosfolipase A2 , Pironas/farmacologia , Zimosan/farmacologia
12.
J Lipid Res ; 47(3): 633-42, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16369049

RESUMO

The synthesis of an omega-pyrene-labeled 1-O-alkyl-sn-glycerol was performed using a chirospecific method starting from R-(-)-2,3-O-isopropylidene-sn-glycerol. The product, 1-O-[9'-(1''-pyrenyl)]nonyl-sn-glycerol (pAG), is a fluorescent ether lipid that has a pyrene moiety covalently attached at the alkyl chain terminus. pAG was taken into CHO-K1 cells and a plasmalogen-deficient variant of CHO-K1, NRel-4. This variant is defective in dihydroxyacetonephosphate acyltransferase, which catalyzes the first step in plasmenylethanolamine (PlsEtn) biosynthesis. pAG was incorporated primarily into ethanolamine and choline phospholipids as well as a neutral lipid fraction tentatively identified as alkyldiacylglycerol. NRel-4 accumulated more fluorescence in the phospholipid fraction than CHO-K1, specifically in the ethanolamine phospholipids. Analysis of the fluorescent lipids showed that 93% of the pAG was incorporated into glycerolipids with the ether bond intact. Although the addition of 20 microM 1-O-hexadecyl-sn-glycerol to the medium fully restored PlsEtn biosynthesis in NRel-4 cells, pAG only partially restored PlsEtn synthesis. Incubation of cells with pAG followed by irradiation with long-wavelength (>300 nm) ultraviolet light resulted in cytotoxicity. NRel-4 cells displayed an increased sensitivity to this treatment compared with CHO-K1 cells. This photodynamic cytotoxicity approach could be used to select for mutants that are defective in downstream steps in ether lipid biosynthesis.


Assuntos
Glicerol/análogos & derivados , Éteres Fosfolipídicos/química , Pirenos/síntese química , Animais , Células CHO , Cricetinae , Relação Dose-Resposta a Droga , Fluorescência , Glicerol/síntese química , Glicerol/metabolismo , Glicerol/farmacologia , Éteres Fosfolipídicos/metabolismo , Éteres Fosfolipídicos/farmacologia , Fosfolipídeos/biossíntese , Pirenos/metabolismo , Pirenos/farmacologia , Raios Ultravioleta
13.
J Lipid Res ; 46(4): 727-35, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15687349

RESUMO

The variant CHO-K1 cell line, NRel-4, is unable to synthesize plasmalogens because of a severe reduction in dihydroxyacetonephosphate acyltransferase (DHAPAT) activity (Nagan, N., A. K. Hajra, L. K. Larkins, P. Lazarow, P. E. Purdue, W. B. Rizzo, and R. A. Zoeller. 1998. Isolation of a Chinese hamster fibroblast variant defective in dihydroxyacetonephosphate acyltransferase activity and plasmalogen biosynthesis: use of a novel two-step selection protocol. Biochem. J. 332: 273-279). Northern analysis demonstrated that the loss of this activity was attributable to a severe reduction in mRNA levels for DHAPAT. Transfection of NRel-4 cells with a plasmid bearing the human DHAPAT cDNA recovered DHAPAT activity and plasmalogen biosynthesis. Examination of clonal isolates from the transfected population showed that recovery of as little as 10% of wild-type DHAPAT activity restored plasmalogen levels to 55% of normal, whereas in one isolate, NRel-4.15, which overexpressed DHAPAT activity by 6-fold over wild-type cells, plasmalogen levels were returned only to wild-type values. Although the rate of plasmenylethanolamine biosynthesis was restored in NRel-4.15, the biosynthesis of nonether glycerolipids was either decreased or unaffected, suggesting that peroxisomal DHAPAT does not normally contribute to nonether glycerolipid biosynthesis. These data demonstrate that a defect in the gene that codes for peroxisomal DHAPAT is the primary lesion in the NRel-4 cell line and that the peroxisomal DHAPAT is essential for the biosynthesis of plasmalogens in animal cells.


Assuntos
Aciltransferases/metabolismo , Glicerofosfolipídeos/biossíntese , Glicerofosfolipídeos/química , Plasmalogênios/biossíntese , Aciltransferases/genética , Animais , Células CHO , Cricetinae , Etanolamina/classificação , Etanolamina/metabolismo , Humanos , Plasmalogênios/química , Plasminogênio/deficiência , Plasminogênio/genética , Plasminogênio/metabolismo , Transfecção
14.
J Lipid Res ; 44(1): 182-92, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12518037

RESUMO

Plasmalogens are a major sub-class of ethanolamine and choline phospholipids in which the sn-1 position has a long chain fatty alcohol attached through a vinyl ether bond. These phospholipids are proposed to play a role in membrane fusion-mediated events. In this study, we investigated the role of the ethanolamine plasmalogen plasmenylethanolamine (PlsEtn) in intracellular cholesterol transport in Chinese hamster ovary cell mutants NRel-4 and NZel-1, which have single gene defects in PlsEtn biosynthesis. We found that PlsEtn was essential for specific cholesterol transport pathways, those from the cell surface or endocytic compartments to acyl-CoA/cholesterol acyltransferase in the endoplasmic reticulum. The movement of cholesterol from the endoplasmic reticulum or endocytic compartments to the cell surface was normal in PlsEtn-deficient cells. Also, vesicle trafficking was normal in PlsEtn-deficient cells, as measured by fluid phase endocytosis and exocytosis, as was the movement of newly-synthesized proteins to the cell surface. The mutant cholesterol transport phenotype was due to the lack of PlsEtn, since it was corrected when NRel-4 cells were transfected with a cDNA encoding the missing enzyme or supplied with a metabolic intermediate that enters the PlsEtn biosynthetic pathway downstream of the defect. Future work must determine the precise role that plasmalogens have on cholesterol transport to the endoplasmic reticulum.


Assuntos
Colesterol/metabolismo , Plasmalogênios/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Células Cultivadas , Endocitose , Retículo Endoplasmático/metabolismo , Esterificação , Exocitose , Filipina , Lisossomos/metabolismo , Microscopia de Fluorescência , Estrutura Molecular , Plasmalogênios/biossíntese
15.
Am J Physiol Heart Circ Physiol ; 283(2): H671-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12124215

RESUMO

Supplementation of cultured human pulmonary arterial endothelial cells (PAEC) with sn-1-O-hexadecylglycerol (HG) resulted in an approximately twofold increase in cellular levels of plasmalogens, a subclass of phospholipids known to have antioxidant properties; this was due, primarily, to a fourfold increase in the choline plasmalogens. Exposure of unsupplemented human PAEC to hypoxia (PO(2) = 20-25 mmHg) caused an increase in cellular reactive oxygen species (ROS) over a period of 5 days with a coincident decrease in viability. In contrast, HG-supplemented cells survived for at least 2 wk under these conditions with no evidence of increased ROS. Hypoxia resulted in a selective increase in the turnover of the plasmalogen plasmenylethanolamine. Human PAEC with elevated plasmalogen levels were also more resistant to H(2)O(2), hyperoxia, and the superoxide generator plumbagin. This protection was seemingly specific to cellular stresses in which significant ROS were generated because the sensitivity to lethal heat shock or glucose deprivation was not altered in HG-treated human PAEC. HG, by itself, was not sufficient for protection; HG supplementation of bovine PAEC had no effect upon plasmalogen levels and did not rescue these cells from the cytotoxic effects of hypoxia. This is the initial demonstration that plasmalogen content can be substantially enhanced in a normal cell. These data also demonstrate that HG can protect cells during hypoxia and other ROS-mediated stress, likely due to the resulting increase in these antioxidant phospholipids.


Assuntos
Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Plasmalogênios/metabolismo , Animais , Bovinos , Células Cultivadas , Suscetibilidade a Doenças , Endotélio Vascular/efeitos dos fármacos , Éteres de Glicerila/farmacologia , Humanos , Hipóxia/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...