Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 11(6): 3478-3486, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33859867

RESUMO

Light absorption and scattering by metal nanoparticles can drive catalytic reactions at their surface via the generation of hot charge carriers, elevated temperatures, and focused electromagnetic fields. These photoinduced processes can substantially alter the shape, surface structure, and oxidation state of surface atoms of the nanoparticles and therefore significantly modify their catalytic properties. Information on such local structural and chemical change in plasmonic nanoparticles is however blurred in ensemble experiments, due to the typical large heterogeneity in sample size and shape distributions. Here, we use single-particle dark-field and Raman scattering spectroscopy to elucidate the reshaping and surface restructuring of individual silver nanodisks under plasmon excitation and during photocatalytic CO2 hydrogenation. We show that silver nanoparticles reshape significantly in inert N2 atmosphere, due to photothermal effects. Furthermore, by collecting the inelastic scattering during laser irradiation in a reducing gas environment, we observe intermittent light emission from silver clusters transiently formed at the nanoparticle surface. These clusters are likely to modify the photocatalytic activity of silver nanodisks and to enable detection of reaction products by enhancing their Raman signal. Our results highlight the dynamic nature of the catalytic surface of plasmonic silver nanoparticles and demonstrate the power of single-particle spectroscopic techniques to unveil their structure-activity relationship both in situ and in real time.

2.
ACS Appl Mater Interfaces ; 12(32): 35986-35994, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32672034

RESUMO

Hot electrons generated in metal nanoparticles can drive chemical reactions and selectively deposit cocatalyst materials on the plasmonic hotspots, the areas where the decay of plasmons takes place and the hot electrons are created. While hot electrons have been extensively used for nanomaterial formation, the utilization of hot holes for simultaneous cocatalyst deposition has not yet been explored. Herein, we demonstrate that hot holes can drive an oxidation reaction for the deposition of the manganese oxide (MnOx) cocatalyst on different plasmonic gold (Au) nanostructures on a thin titanium dioxide (TiO2) layer, excited at their surface plasmon resonance. An 80% correlation between the hot-hole deposition sites and the simulated plasmonic hotspot location is showed when considering the typical hot-hole diffusion length. Simultaneous deposition of more than one cocatalyst is also achieved on one of the investigated plasmonic systems (Au plasmonic nanoislands) through the hot-hole oxidation of a manganese salt and the hot-electron reduction of a platinum precursor in the same solution. These results add more flexibility to the use of hot carriers and open up the way for the design of complex photocatalytic nanostructures.

3.
J Chem Phys ; 152(24): 244710, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32610941

RESUMO

Silver orthophosphate is a highly promising visible light photocatalyst with high quantum yield for solar driven water oxidation. Recently, the performance of this material has been further enhanced using facet-controlled synthesis. The tetrahedral particles with {111} exposed facets demonstrate higher photocatalytic performance than the cubic particles with {100} exposed facets. However, the reason behind this large difference in photocatalytic performance is still not understood. In this work, we study the free charge carrier dynamics, such as mobility, lifetime, and diffusion lengths, for the {111}-faceted tetrahedral and the {100}-faceted cubic particles using time-resolved microwave conductivity measurements. An order of magnitude higher charge carrier mobility and diffusion length are found for the tetrahedral particles as compared to the cubic particles. The differences in crystal structure, surface composition, and optical properties are investigated in order to understand how these properties impact the charge carrier dynamics and the photocatalytic performance of differently faceted particles.

4.
Nanoscale ; 11(42): 20252-20260, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31624815

RESUMO

We present the fabrication of tunable plasmonic hafnium nitride (HfN) nanoparticles. HfN is a metallic refractory material with the potential of supporting plasmon resonances in the visible range, similar to silver and gold, but with the additional benefits of high melting point, chemical stability, and mechanical hardness. However, the preparation of HfN nanoparticles and the experimental demonstration of their plasmonic potential are still in their infancy. Here, high quality HfN thin films were fabricated, for which ellipsometry shows their plasmonic potential. From these thin films, nanorods and nanotriangles were milled using a focused ion beam and the plasmon resonances were identified using cathodoluminescence mapping. As an alternative fabrication strategy, an optimized electron-beam lithography procedure was used to prepare arrays of HfN nanoparticles, which also exhibited clear surface plasmon resonances. These results pave the way to further explore HfN nanoparticles in plasmonically-powered applications where materials robustness is essential.

5.
ACS Omega ; 4(5): 9262-9270, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460015

RESUMO

The water splitting activity of hematite is sensitive to the film processing parameters due to limiting factors such as a short hole diffusion length, slow oxygen evolution kinetics, and poor light absorptivity. In this work, we use direct current (DC) magnetron sputtering as a fast and cost-effective route to deposit metallic iron thin films, which are annealed in air to obtain well-adhering hematite thin films on F:SnO2-coated glass substrates. These films are compared to annealed hematite films, which are deposited by reactive radio frequency (RF) magnetron sputtering, which is usually used for depositing metal oxide thin films, but displays an order of magnitude lower deposition rate. We find that DC sputtered films have much higher photoelectrochemical activity than reactive RF sputtered films. We show that this is related to differences in the morphology and surface composition of the films as a result of the different processing parameters. This in turn results in faster oxygen evolution kinetics and lower surface and bulk recombination effects. Thus, fabricating hematite thin films by fast and cost-efficient metallic iron deposition using DC magnetron sputtering is shown to be a valid and industrially relevant route for hematite photoanode fabrication.

6.
Opt Lett ; 39(5): 1185-8, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24690702

RESUMO

A surface structured extreme ultraviolet multilayer mirror was developed showing full band suppression of UV (λ=100-400 nm) and simultaneously a high reflectance of EUV light (λ=13.5 nm). The surface structure consists of Si pyramids, which are substantially transparent for EUV but reflective for UV light. The reflected UV is filtered out by blazed diffraction, interference, and absorption. A first demonstration pyramid structure was fabricated on a multilayer by using a straightforward deposition technique. It shows an average suppression of 14 times over the whole UV range and an EUV reflectance of 56.2% at 13.5 nm. This robust scheme can be used as a spectral purity solution for all XUV sources that emit longer wavelength radiation as well.

7.
Opt Express ; 21(24): 29894-904, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24514540

RESUMO

In the first part of this article we experimentally show that contrast between the very thin layers of La and B enables close to theoretical reflectance. The reflectivity at 6.8 nm wavelength was measured from La/B multilayer mirrors with period thicknesses ranging from 3.5 to 7.2 nm at the appropriate angle for constructive interference. The difference between the measured reflectance and the reflectance calculated for a perfect multilayer structure decreases with increasing multilayer period. The reflectance of the multilayer with the largest period approaches the theoretical value, showing that the optical contrast between the very thin layers of these structures allows to experimentally access close to theoretical reflectance. In the second part of the article we discuss the structure of La/B and LaN/B multilayers. This set of multilayers is probed by hard X-rays (λ = 0.154 nm) and EUV radiation (λ = 6.8 nm). The structure is reconstructed based on a simultaneous fit of the grazing incidence hard X-ray reflectivity and the EUV reflectivity curves. The reflectivity analysis of the La/B and LaN/B multilayer mirrors shows that the lower reflectance of La/B mirrors compared to LaN/B mirrors can be explained by the presence of 5% of La atoms in the B layer and 63% of B in La layer. After multi-parametrical optimization of the LaN/B system, including the nitridation of La, the highest near normal incidence reflectivity of 57.3% at 6.6 nm wavelength has been measured from a multilayer mirror, containing 175 bi-layers. This is the highest value reported so far.

8.
Appl Opt ; 51(36): 8541-8, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23262592

RESUMO

We studied the structure and optical properties of B(4)C/Mo/Y/Si multilayer systems. Using extended x-ray absorption fine structure measurements at the Y and Mo K-edge, the structure of the subnanometer thick Y layer and the underlying Mo layer were analyzed. It was found that even a 0.2 nm thick Y layer significantly reduced silicon diffusion toward Mo, thus reducing Mo silicide formation. Hard x-ray reflectometry showed that the difference in average interface roughness of the B(4)C/Mo/Y/Si multilayer structure compared to Mo/Si and B(4)C/Mo/B(4)C/Si multilayer structures was negligible. Soft x-ray reflectometry showed optical improvement of B(4)C/Mo/Y/Si with respect to Mo/Si and B(4)C/Mo/B(4)C/Si multilayer structures.

9.
Opt Express ; 20(11): 11778-86, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714165

RESUMO

The spectral properties of La/B, La/B(4)C, and LaN/B, LaN/B(4)C multilayer mirrors have been investigated in the 6.5-6.9 nm wavelength range based on measured B and B(4)C optical constants. Experimentally it is verified to what extent measured and tabulated optical constants are applicable for simulations of the reflectivity of these short period multilayer mirrors. The measured maximum reflectance at various wavelength values around the boron-K absorption edge is compared to calculated values from model systems. The measured reflectance profiles of La/B and La/B(4)C show a maximum at a slightly larger wavelength than calculations would predict based on the measured B and B(4)C optical constants. This is explained by the influence of a formed boron-lanthanum compound on the wavelength where the multilayer shows maximum reflectance. The maximum reflectance profiles of LaN/B and LaN/B(4)C multilayers can be described accurately by using the same boron atomic scattering factors, indicating boron in the LaN/B(4)C multilayer to be in a similar chemical state as boron in the LaN/B multilayer. It also indicates that nitridation of the La layer in the multilayer prevents the formation of La-B compounds. We show that the optimal wavelength for boron based optics is about 6.65 nm and depends on the B chemical state. Finally, using the measured B optical constants we are able to calculate the spectral response of the multilayers, enabling the prediction of the optimal parameters for the above mentioned multilayers.


Assuntos
Boro/química , Desenho Assistido por Computador , Lentes , Modelos Teóricos , Refratometria/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...