Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Electron Mater ; 6(5): 2909-2916, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38828039

RESUMO

Conjugated polymers with oligoether side chains make up a promising class of thermoelectric materials. In this work, the impact of the side-chain length on the thermoelectric and mechanical properties of polythiophenes is investigated. Polymers with tri-, tetra-, or hexaethylene glycol side chains are compared, and the shortest length is found to result in thin films with the highest degree of order upon doping with the p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). As a result, a stiff material with an electrical conductivity of up to 830 ± 15 S cm-1 is obtained, resulting in a thermoelectric power factor of about 21 µW m-1 K-2 in the case of as-cast films. Aging at ambient conditions results in an initial decrease in thermoelectric properties but then yields a highly stable performance for at least 3 months, with values of about 200 S cm-1 and 5 µW m-1 K-2. Evidently, identification of the optimal side-chain length is an important criterion for the design of conjugated polymers for organic thermoelectrics.

2.
ACS Appl Mater Interfaces ; 15(23): 28300-28309, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37262133

RESUMO

Conjugated polymers with oligoether side chains are promising mixed ionic-electronic conductors, but they tend to feature a low glass transition temperature and hence a low elastic modulus, which prevents their use if mechanical robust materials are required. Carboxymethylated cellulose nanofibrils (CNF) are found to be a suitable reinforcing agent for a soft polythiophene with tetraethylene glycol side chains. Dry nanocomposites feature a Young's modulus of more than 400 MPa, which reversibly decreases to 10 MPa or less upon passive swelling through water uptake. The presence of CNF results in a slight decrease in electronic mobility but enhances the ionic mobility and volumetric capacitance, with the latter increasing from 164 to 197 F cm-3 upon the addition of 20 vol % CNF. Overall, organic electrochemical transistors (OECTs) feature a higher switching speed and a transconductance that is independent of the CNF content up to at least 20 vol % CNF. Hence, CNF-reinforced conjugated polymers with oligoether side chains facilitate the design of mechanically adaptive mixed ionic-electronic conductors for wearable electronics and bioelectronics.

3.
Mater Horiz ; 9(1): 433-443, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34787612

RESUMO

Molecular doping of a polythiophene with oligoethylene glycol side chains is found to strongly modulate not only the electrical but also the mechanical properties of the polymer. An oxidation level of up to 18% results in an electrical conductivity of more than 52 S cm-1 and at the same time significantly enhances the elastic modulus from 8 to more than 200 MPa and toughness from 0.5 to 5.1 MJ m-3. These changes arise because molecular doping strongly influences the glass transition temperature Tg and the degree of π-stacking of the polymer, as indicated by both X-ray diffraction and molecular dynamics simulations. Surprisingly, a comparison of doped materials containing mono- or dianions reveals that - for a comparable oxidation level - the presence of multivalent counterions has little effect on the stiffness. Evidently, molecular doping is a powerful tool that can be used for the design of mechanically robust conducting materials, which may find use within the field of flexible and stretchable electronics.


Assuntos
Polímeros , Tiofenos , Módulo de Elasticidade , Condutividade Elétrica , Polímeros/química , Tiofenos/química
4.
Small ; 18(5): e2102813, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34816573

RESUMO

Stretchable conducting materials are appealing for the design of unobtrusive wearable electronic devices. Conjugated polymers with oligoethylene glycol side chains are excellent candidate materials owing to their low elastic modulus and good compatibility with polar stretchable polymers. Here, electrically conducting elastomeric blend fibers with high stretchability, wet spun from a blend of a doped polar polythiophene with tetraethylene glycol side chains and a polyurethane are reported. The wet-spinning process is versatile, reproducible, scalable, and produces continuous filaments with a diameter ranging from 30 to 70 µm. The fibers are stretchable up to 480% even after chemical doping with iron(III) p-toluenesulfonate hexahydrate and exhibit an electrical conductivity of up to 7.4 S cm-1 , which represents a record combination of properties for conjugated polymer-based fibers. The fibers remain conductive during elongation until fiber fracture and display excellent long-term stability at ambient conditions. Cyclic stretching up to 50% strain for at least 400 strain cycles reveals that the doped fibers exhibit high cyclic stability and retain their electrical conductivity. Finally, a directional strain sensing device, which makes use of the linear increase in resistance of the fibers up to 120% strain is demonstrated.


Assuntos
Compostos Férricos , Dispositivos Eletrônicos Vestíveis , Elasticidade , Condutividade Elétrica , Eletricidade
5.
Adv Sci (Weinh) ; 8(2): 2002778, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511014

RESUMO

Polar polythiophenes with oligoethylene glycol side chains are exceedingly soft materials. A low glass transition temperature and low degree of crystallinity prevents their use as a bulk material. The synthesis of a copolymer comprising 1) soft polythiophene blocks with tetraethylene glycol side chains, and 2) hard urethane segments is reported. The molecular design is contrary to that of other semiconductor-insulator copolymers, which typically combine a soft nonconjugated spacer with hard conjugated segments. Copolymerization of polar polythiophenes and urethane segments results in a ductile material that can be used as a free-standing solid. The copolymer displays a storage modulus of 25 MPa at room temperature, elongation at break of 95%, and a reduced degree of swelling due to hydrogen bonding. Both chemical doping and electrochemical oxidation reveal that the introduction of urethane segments does not unduly reduce the hole charge-carrier mobility and ability to take up charge. Further, stable operation is observed when the copolymer is used as the active layer of organic electrochemical transistors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...