Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroanat ; 16: 853401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321391

RESUMO

In night-migratory songbirds, neurobiological and behavioral evidence suggest the existence of a magnetic sense associated with the ophthalmic branch of the trigeminal nerve (V1), possibly providing magnetic positional information. Curiously, neither the unequivocal existence, structural nature, nor the exact location of any sensory structure has been revealed to date. Here, we used neuronal tract tracing to map both the innervation fields in the upper beak and the detailed trigeminal brainstem terminations of the medial and lateral V1 subbranches in the night-migratory Eurasian Blackcap (Sylvia atricapilla). The medial V1 subbranch takes its course along the ventral part of the upper beak to innervate subepidermal layers and the mucosa of the nasal cavity, whereas the lateral V1 subbranch runs along dorsolateral levels until the nostrils to innervate mainly the skin of the upper beak. In the trigeminal brainstem, medial V1 terminals innervate both the dorsal part and the ventral, magnetically activated part of the principal sensory trigeminal brainstem nuclei (PrV). In contrast, the lateral V1 subbranch innervates only a small part of the ventral PrV. The spinal sensory trigeminal brainstem nuclei (SpV) receive topographically ordered projections. The medial V1 subbranch mainly innervates rostral and medial parts of SpV, whereas the lateral V1 subbranch mainly innervates the lateral and caudal parts of SpV. The present findings could provide valuable information for further analysis of the trigeminal magnetic sense of birds.

2.
J Exp Biol ; 224(Pt 3)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33436368

RESUMO

The star compass of birds, like the sun compass, is not innate. To possess either of them, birds have to observe the rotating sky and determine its centre of rotation (in the case of the star compass) or the sun's movement (for the sun compass). Young birds are believed to learn how to use the star compass before their first migration, even though the evidence of this is lacking. Here, we tested whether hand-raised Pied flycatchers (Ficedula hypoleuca) that had not established the star compass prior to their first autumn migration can gain it later in their ontogeny, in spring. We also attempted to examine whether the observation of diurnal celestial cues (the sun and polarized light) prior to autumn migration would affect the process of star compass learning in spring. When tested in the vertical magnetic field under the natural starry sky, the group of birds that observed the stars in spring as the first celestial cues were able to choose the migratory direction. In contrast, the birds that had never seen the stars were not able to use the nightly celestial cues in the vertical magnetic field. However, birds that had seen the daytime celestial cues till autumn and the stars at spring were disoriented, although this might be due to the small sample size. Our data suggest the possibility that the star compass may be learned in spring and emphasize the necessity for further research into the interaction of celestial compasses.


Assuntos
Orientação , Aves Canoras , Animais , Sinais (Psicologia) , Aprendizagem , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...