Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114199, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728138

RESUMO

Implantable electrode arrays are powerful tools for directly interrogating neural circuitry in the brain, but implementing this technology in the spinal cord in behaving animals has been challenging due to the spinal cord's significant motion with respect to the vertebral column during behavior. Consequently, the individual and ensemble activity of spinal neurons processing motor commands remains poorly understood. Here, we demonstrate that custom ultraflexible 1-µm-thick polyimide nanoelectronic threads can conduct laminar recordings of many neuronal units within the lumbar spinal cord of unrestrained, freely moving mice. The extracellular action potentials have high signal-to-noise ratio, exhibit well-isolated feature clusters, and reveal diverse patterns of activity during locomotion. Furthermore, chronic recordings demonstrate the stable tracking of single units and their functional tuning over multiple days. This technology provides a path for elucidating how spinal circuits compute motor actions.


Assuntos
Eletrodos Implantados , Medula Espinal , Animais , Medula Espinal/fisiologia , Camundongos , Potenciais de Ação/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Locomoção/fisiologia , Camundongos Endogâmicos C57BL , Masculino
2.
Cell Rep ; 42(6): 112554, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37235473

RESUMO

Intracortical microstimulation (ICMS) enables applications ranging from neuroprosthetics to causal circuit manipulations. However, the resolution, efficacy, and chronic stability of neuromodulation are often compromised by adverse tissue responses to the indwelling electrodes. Here we engineer ultraflexible stim-nanoelectronic threads (StimNETs) and demonstrate low activation threshold, high resolution, and chronically stable ICMS in awake, behaving mouse models. In vivo two-photon imaging reveals that StimNETs remain seamlessly integrated with the nervous tissue throughout chronic stimulation periods and elicit stable, focal neuronal activation at low currents of 2 µA. Importantly, StimNETs evoke longitudinally stable behavioral responses for over 8 months at a markedly low charge injection of 0.25 nC/phase. Quantified histological analyses show that chronic ICMS by StimNETs induces no neuronal degeneration or glial scarring. These results suggest that tissue-integrated electrodes provide a path for robust, long-lasting, spatially selective neuromodulation at low currents, which lessens risk of tissue damage or exacerbation of off-target side effects.


Assuntos
Córtex Somatossensorial , Camundongos , Animais , Córtex Somatossensorial/fisiologia , Eletrodos , Estimulação Elétrica/métodos , Eletrodos Implantados
3.
bioRxiv ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865195

RESUMO

Intracortical microstimulation (ICMS) enables applications ranging from neuroprosthetics to causal circuit manipulations. However, the resolution, efficacy, and chronic stability of neuromodulation is often compromised by the adverse tissue responses to the indwelling electrodes. Here we engineer ultraflexible stim-Nanoelectronic Threads (StimNETs) and demonstrate low activation threshold, high resolution, and chronically stable ICMS in awake, behaving mouse models. In vivo two-photon imaging reveals that StimNETs remain seamlessly integrated with the nervous tissue throughout chronic stimulation periods and elicit stable, focal neuronal activation at low currents of 2 µA. Importantly, StimNETs evoke longitudinally stable behavioral responses for over eight months at markedly low charge injection of 0.25 nC/phase. Quantified histological analysis show that chronic ICMS by StimNETs induce no neuronal degeneration or glial scarring. These results suggest that tissue-integrated electrodes provide a path for robust, long-lasting, spatially-selective neuromodulation at low currents which lessen risks of tissue damage or exacerbation of off-target side-effects.

4.
Bioengineering (Basel) ; 10(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36829757

RESUMO

Recent progress in cortical stem cell transplantation has demonstrated its potential to repair the brain. However, current transplant models have yet to demonstrate that the circuitry of transplant-derived neurons can encode useful function to the host. This is likely due to missing cell types within the grafts, abnormal proportions of cell types, abnormal cytoarchitecture, and inefficient vascularization. Here, we devised a transplant platform for testing neocortical tissue prototypes. Dissociated mouse embryonic telencephalic cells in a liquid scaffold were transplanted into aspiration-lesioned adult mouse cortices. The donor neuronal precursors differentiated into upper and deep layer neurons that exhibited synaptic puncta, projected outside of the graft to appropriate brain areas, became electrophysiologically active within one month post-transplant, and responded to visual stimuli. Interneurons and oligodendrocytes were present at normal densities in grafts. Grafts became fully vascularized by one week post-transplant and vessels in grafts were perfused with blood. With this paradigm, we could also organize cells into layers. Overall, we have provided proof of a concept for an in vivo platform that can be used for developing and testing neocortical-like tissue prototypes.

5.
Neurophotonics ; 9(3): 032204, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35036472

RESUMO

Significance: Electrophysiological recording and optical imaging are two prevalent neurotechnologies with complementary strengths, the combined application of which can significantly improve our capacity in deciphering neural circuits. Flexible electrode arrays can support longitudinal optical imaging in the same brain region, but their mechanical flexibility makes surgical preparation challenging. Here, we provide a step-by-step protocol by which an ultraflexible nanoelectronic thread is co-implanted with a cranial window in a single surgery to enable chronic, dual-modal measurements. Aim: The method uses 1 - µ m -thick polymer neural electrodes which conform to the site of implantation. The mechanical flexibility of the probe allows bending without breaking and enables long-lasting electrophysiological recordings of single-unit activities and concurrent, high-resolution optical imaging through the cranial window. Approach: The protocol describes methods and procedures to co-implant an ultraflexible electrode array and a glass cranial window in the mouse neocortex. The implantation strategy includes temporary attachment of flexible electrodes to a retractable tungsten-microwire insertion shuttle, craniotomy, stereotaxic insertion of the electrode array, skull fixation of the cranial window and electrode, and installation of a head plate. Results: The resultant implant allows simultaneous interrogation of brain activity both electrophysiologically and optically for several months. Importantly, a variety of optical imaging modalities, including wide-field fluorescent imaging, two-photon microscopy, and functional optical imaging, can be readily applied to the specific brain region where ultraflexible electrodes record from. Conclusions: The protocol describes a method for co-implantation of ultraflexible neural electrodes and a cranial window for chronic, multimodal measurements of brain activity in mice. Device preparation and surgical implantation are described in detail to guide the adaptation of these methods for other flexible neural implants and cranial windows.

6.
Nano Lett ; 17(9): 5646-5652, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28796525

RESUMO

We report a method to electrically detect heating from excitation of propagating surface plasmon polaritons (SPP). The coupling between SPP and a continuous wave laser beam is realized through lithographically defined gratings in the electrodes of thin film gold "bow tie" nanodevices. The propagating SPPs allow remote coupling of optical energy into a nanowire constriction. Heating of the constriction is detectable through changes in the device conductance and contains contributions from both thermal diffusion of heat generated at the grating and heat generated locally at the constriction by plasmon dissipation. We quantify these contributions through computational modeling and demonstrate that the propagation of SPPs provides the dominant contribution. Coupling optical energy into the constriction via propagating SPPs in this geometry produces an inferred temperature rise of the constriction a factor of 60 smaller than would take place if optical energy were introduced via directly illuminating the constriction. The grating approach provides a path for remote excitation of nanoconstrictions using SPPs for measurements that usually require direct laser illumination, such as surface-enhanced Raman spectroscopy.

7.
Nanoscale ; 9(26): 9160-9166, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28650059

RESUMO

Nanoscale structuring holds promise to improve the thermoelectric properties of materials for energy conversion and photodetection. We report a study of the spatial distribution of the photothermoelectric voltage in thin-film nanowire devices fabricated from a single metal. A focused laser beam is used to locally heat the metal nanostructure via a combination of direct absorption and excitation of a plasmon resonance in Au devices. As seen previously, in nanowires shorter than the spot size of the laser, we observe a thermoelectric voltage distribution that is consistent with the local Seebeck coefficient being spatially dependent on the width of the nanostructure. In longer structures, we observe extreme variability of the net thermoelectric voltage as the laser spot is scanned along the length of the nanowire. The sign and magnitude of the thermoelectric voltage is sensitive to the structural defects, metal grain structure, and surface passivation of the nanowire. This finding opens the possibility of improved local control of the thermoelectric properties at the nanoscale.

8.
J Phys Chem Lett ; 8(8): 1739-1744, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28365996

RESUMO

Nanostructured metals subject to local optical interrogation can generate open-circuit photovoltages potentially useful for energy conversion and photodetection. We report a study of the photovoltage as a function of illumination position in single-metal Au nanowires and nanowires with nanogaps formed by electromigration. We use a laser scanning microscope to locally heat the metal nanostructures via excitation of a local plasmon resonance and direct absorption. In nanowires without nanogaps, where charge transport is diffusive, we observe voltage distributions consistent with thermoelectricity, with the local Seebeck coefficient depending on the width of the nanowire. In the nanowires with nanogaps, where charge transport is by tunneling, we observe large photovoltages up to tens of mV, with magnitude, polarization dependence, and spatial localization that follow the plasmon resonance in the nanogap. This is consistent with a model of photocurrent across the nanogap carried by the nonequilibrium, "hot" carriers generated upon plasmon excitation.

9.
J Phys Condens Matter ; 28(49): 495303, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27748268

RESUMO

We report measurements of the bias dependence of the Fano factor in ensembles of atomic-scale Au junctions at 77 K. Previous measurements of shot noise at room temperature and low biases have found good agreement of the Fano factor with the expectations of the Landauer-Büttiker formalism, while enhanced Fano factors have been observed at biases of hundreds of mV (Chen et al 2014 Sci. Rep. 4 4221). We find even stronger enhancement of shot noise at 77 K with an 'excess' Fano factor up to ten times the low bias value. We discuss the observed ensemble Fano factor bias dependence in terms of candidate models. The results are most consistent with either a bias-dependent channel mixing picture or a model incorporating noise enhancement due to current-driven, nonequilibrium phonon populations, though a complete theoretical treatment of the latter in the ensemble average limit is needed.

10.
ACS Nano ; 10(7): 6972-9, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27355238

RESUMO

Inelastic electron tunneling and surface-enhanced optical spectroscopies at the molecular scale require cryogenic local temperatures even under illumination-conditions that are challenging to achieve with plasmonically resonant metallic nanostructures. We report a detailed study of the laser heating of plasmonically active nanowires at substrate temperatures from 5 to 60 K. The increase of the local temperature of the nanowire is quantified by a bolometric approach and could be as large as 100 K for a substrate temperature of 5 K and typical values of laser intensity. We also demonstrate that a ∼3-fold reduction of the local temperature increase is possible by switching to a sapphire or quartz substrate. Finite element modeling of the heat dissipation reveals that the local temperature increase of the nanowire at temperatures below ∼50 K is determined largely by the thermal boundary resistance of the metal-substrate interface. The model reproduces the striking experimental trend that in this regime the temperature of the nanowire varies nonlinearly with the incident optical power. The thermal boundary resistance is demonstrated to be a major constraint on reaching low temperatures necessary to perform simultaneous inelastic electron tunneling and surface-enhanced Raman spectroscopies.

11.
Nano Lett ; 16(2): 1104-9, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26814562

RESUMO

We observe large, reversible, bias driven changes in the vibrational energies of PCBM based on simultaneous transport and surface-enhanced Raman spectroscopy (SERS) measurements on PCBM-gold junctions. A combination of linear and quadratic shifts in vibrational energies with voltage is analyzed and compared with similar measurements involving C60-gold junctions. A theoretical model based on density functional theory (DFT) calculations suggests that both a vibrational Stark effect and bias-induced charging of the junction contribute to the shifts in vibrational energies. In the PCBM case, a linear vibrational Stark effect is observed due to the permanent electric dipole moment of PCBM. The vibrational Stark shifts shown here for PCBM junctions are comparable to or larger than the charging effects that dominate in C60 junctions.

12.
Adv Mater ; 25(1): 137-41, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23027629

RESUMO

HgTe colloidal quantum dots (CQD) in an inorganic As(2)S(3) matrix allow 100-fold higher mobility with optimized transport properties compared to HgTe-organic CQD film while remaining intrinsic. The material's electronic properties are measured by field effect transistors as a function of temperature and the responsivity and detectivity of the mid-IR photoconductors are discussed.

13.
ACS Nano ; 6(9): 8094-104, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22812917

RESUMO

Superconductivity in films of electronically coupled colloidal lead nanocrystals is reported. The coupling between particles is in situ controlled through the conversion of the oxides present on the surface of the nanoparticles to chalcogenides. This transformation allows for a 10(9)-fold increase in the conductivity. The temperature of the onset of the superconductivity was found to depend upon the degree of coupling of the nanoparticles in the vicinity of the insulator-superconductor transition. The critical current density of the best sample of Pb/PbSe nanocrystals at zero magnetic field was determined to be 4 × 10(3) A/cm(2). In turn, the critical field of the sample shows 50-fold enhancement compared to bulk Pb.


Assuntos
Chumbo/química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Selênio/química , Coloides/química , Cristalização/métodos , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
14.
ACS Nano ; 4(10): 5599-608, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20873723

RESUMO

Monodisperse colloidal lead nanoparticles with diameters ranging from 4.4 to 20 nm are prepared by a self-limiting growth method. The nanoparticles are monodispersed and protected from oxidation by an amorphous tin-lead oxide shell of 1.5-2 nm thickness. The magnetic susceptibility of the particles is measured as a function of size, temperature, and magnetic field. The Meissner effect is observed indicating the superconducting transition. For the 20 and 16 nm particles, the critical temperature is suppressed to 6.9 K from the bulk value of 7.2 K and is further reduced for smaller particles. Depending on the size of the particles, the critical field is enhanced by 60-140 times. The superconducting properties agree closely with the theoretical expectations.


Assuntos
Coloides/química , Chumbo/química , Nanopartículas Metálicas/química , Ligantes , Magnetismo , Metais/química , Nanotecnologia/métodos , Óxidos/química , Oxigênio/química , Física/métodos , Temperatura , Estanho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...