Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(9): 2770-2785, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36751945

RESUMO

A 60-year-old problem with the atomic arrangements and exact compositions of alkali polytungstates related to hexagonal tungsten bronze (HTB) was solved. The systems A2WO4-WO3 (A = K, Rb) were restudied and the average monoclinic layered structures of stoichiometric polytungstates A4W11O35 (A = K, Rb, Cs, Tl) and A2W7O22 (A = K, Rb, Cs) were first successfully determined. The structures resemble those of "MoW11O36" and "MoW14O45" (J. Graham and A. D. Wadsley, Acta Crystallogr., 1961, 14, 379-383) and are derived from HTB by breaking into slabs parallel to (100) due to the ordered omission of some [WO]∞ chains along the hexagonal tunnels. The slabs in A4W11O35 (A = Cs, Tl) and A2W7O22 (A = Rb, Cs) are mutually shifted by the a/2 HTB unit cell axis. These data mainly confirmed our preliminary structural models of HTB-like alkali polytungstates (S. F. Solodovnikov, N. V. Ivannikova, Z. A. Solodovnikova and E. S. Zolotova, Inorg. Mater., 1998, 34, 845-853) and revealed a new similar thallium polytungstate. The structures of the HTB-like polytungstates and related compounds form a homologous series of layered complex oxides or fluorides An+2-xM3n+2X9n+8 where n = 2, 3 and 4 are equal to the numbers of HTB hexagonal tunnels across the polytungstate slab width for Tl2W4O13, A4W11O35 and A2W7O22 (A = K, Rb, Cs or Tl), respectively. The structures of the HTB-like polytungstates seem to intergrow with HTB-type AxWO3 to form, in particular, higher homologues of the series. Our group-supergroup analysis, measurements of nonlinear optical activity and electrical conductivity, and calculations of the bond-valence site energy barriers indicate possible ferroelectric/ferroelastic properties and moderate 2D oxide-ion mobility within the HTB-type slabs of the studied polytungstates.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 5): 913-925, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017323

RESUMO

The triple molybdates K3-xNa1+xM4(MoO4)6 (M = Ni, Mg, Co) and K3+xLi1-xMg4(MoO4)6 were found upon studying the corresponding ternary molybdate systems, and their structures, thermal stability and electrical conductiviplusmnty were investigated. The compounds crystallize in the space group R3c and are isostructural with the sodium-ion conductor II-Na3Fe2(AsO4)3 and yurmarinite, Na7(Fe3+, Mg, Cu)4(AsO4)6; their basic structural units are flat polyhedral clusters of the central M1O6 octahedron sharing edges with three surrounding M2O6 octahedra, which combine with single NaO6 octahedra and bridging MoO4 tetrahedra to form open three-dimensional (3D) frameworks where the cavities are partially occupied by disordered potassium (sodium) ions. The split alkali-ion positions in K3-xNa1+xM4(MoO4)6 (M = Ni, Mg, Co) give their structural formulae as [(K,Na)0.5□0.5)]6(Na)[M1][M2]3(MoO4)6, whereas the lithium-containing compound (K0.5□0.5)6(Mg0.89K0.11)(Li0.89Mg0.11)Mg3(MoO4)6 shows an unexpected (Mg, K) isomorphism, which is similar to (Mn, K) and (Co, K) substitutions in isostructural K3+xLi1-xM4(MoO4)6 (M = Mn, Co). The crystal chemistry of the title compounds and related arsenates, phosphates and molybdates was considered, and the connections of the cationic distributions with potential 3D ionic conductivity were shown by means of calculating the bond valence sum (BVS) maps for the Na+, Li+ and K+ ions. Electrical conductivity measurements gave relatively low values for the triple molybdates [σ = 4.8 × 10-6 S cm-1 at 390°C for K3NaCo4(MoO4)6 and 5 × 10-7 S cm-1 at 400°C for K3LiMg4(MoO4)6] compared with II-Na3Fe2(AsO4)3 (σ = 8.3 × 10-4 S cm-1 at 300°C). This may be explained by a low concentration of sodium or lithium ions and the blocking of their transport by large potassium ions.

3.
Acta Crystallogr C Struct Chem ; 73(Pt 11): 946-952, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111524

RESUMO

Two new compounds, namely cubic tricaesium lithium dizinc tetrakis(tetraoxotungstate), Cs3LiZn2(WO4)4, and tetragonal trirubidium dilithium gallium tetrakis(tetraoxomolybdate), Rb3Li2Ga(MoO4)4, belong to the structural family of Cs6Zn5(MoO4)8 (space group I-43d, Z = 4), with a partially incomplete (Zn5/6□1/6) position. In Cs3LiZn2(WO4)4, this position is fully statistically occupied by (Zn2/3Li1/3), and in Rb3Li2Ga(MoO4)4, the 2Li + Ga atoms are completely ordered in two distinct sites of the space group I-42d (Z = 4). In the same way, the crystallographically equivalent A+ cations (A = Cs, Rb) in Cs6Zn5(MoO4)8, Cs3LiZn2(WO4)4 and isostructural A3LiZn2(MoO4)4 and Cs3LiCo2(MoO4)4 are divided into two sites in Rb3Li2Ga(MoO4)4, as in other isostructural A3Li2R(MoO4)4 compounds (AR = TlAl, RbAl, CsAl, CsGa, CsFe). In the title structures, the WO4 and (Zn,Li)O4 or LiO4, GaO4 and MoO4 tetrahedra share corners to form open three-dimensional frameworks with the caesium or rubidium ions occupying cuboctahedral cavities. The tetrahedral frameworks are related to that of mayenite 12CaO·7Al2O3 and isotypic compounds. Comparison of isostructural Cs3MZn2(MoO4)4 (M = Li, Na, Ag) and Cs6Zn5(MoO4)8 shows a decrease of the cubic lattice parameter and an increase in thermal stability with the filling of the vacancies by Li+ in the Zn position of the Cs6Zn5(MoO4)8 structure, while filling of the cation vacancies by larger Na+ or Ag+ ions plays a destabilizing role. The series A3Li2R(MoO4)4 shows second harmonic generation effects compatible with that of ß'-Gd2(MoO4)3 and may be considered as nonlinear optical materials with a modest nonlinearity.

4.
Acta Crystallogr C ; 62(Pt 1): i6-8, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16397322

RESUMO

Two new isotypic triple molybdates, namely tricesium lithium dicobalt tetrakis(tetraoxomolybdate), Cs3LiCo2(MoO4)4, and trirubidium lithium dizinc tetrakis(tetraoxomolybdate), Rb3LiZn2(MoO4)4, crystallize in the non-centrosymmetric cubic space group I-43d and adopt the Cs6Zn5(MoO4)8 structure type. In the parent structure, the Zn positions have 5/6 occupancy, while they are fully occupied by statistically distributed M2+ and Li+ cations in the title compounds. In both structures, all corners of the (M(2/3)Li(1/3))O4 tetrahedra (M = Co and Zn), having point symmetry -4, are shared with the MoO4 tetrahedra, which lie on threefold axes and share corners with three (M,Li)O4 tetrahedra to form open mixed frameworks. Large alkaline cations occupy distorted cuboctahedral cavities with -4 symmetry. The mixed tetrahedral frameworks in the structures are close to those of mayenite (12CaO.7Al2O3) and the related compounds 11CaO.7Al2O3.CaF2, wadalite (Ca6Al5Si2O16Cl3) and Na6Zn3(AsO4)4.3H2O, but the terminal vertices of the MoO4 tetrahedra are directed in opposite directions along the threefold axes compared with the configurations of Al(Si)O4 or AsO4 tetrahedra. The cation arrangements in Cs3LiCo2(MoO4)4, Rb3LiZn2(MoO4)4 and Cs6Zn5(MoO4)8 repeat the structure of Y3Au3Sb4, being stuffed derivatives of the Th3P4 type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...