Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 11(13): 6491-6506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995670

RESUMO

Rationale: TGFß signaling pathway controls tissue fibrotic remodeling, a hallmark in many diseases leading to organ injury and failure. In this study, we address the role of Apilimod, a pharmacological inhibitor of the lipid kinase PIKfyve, in the regulation of cardiac pathological fibrotic remodeling and TGFß signaling pathway. Methods: The effects of Apilimod treatment on myocardial fibrosis, hypertrophy and cardiac function were assessed in vivo in a mouse model of pressure overload-induced heart failure. Primary cardiac fibroblasts and HeLa cells treated with Apilimod as well as genetic mutation of PIKfyve in mouse embryonic fibroblasts were used as cell models. Results: When administered in vivo, Apilimod reduced myocardial interstitial fibrosis development and prevented left ventricular dysfunction. In vitro, Apilimod controlled TGFß-dependent activation of primary murine cardiac fibroblasts. Mechanistically, both Apilimod and genetic mutation of PIKfyve induced TGFß receptor blockade in intracellular vesicles, negatively modulating its downstream signaling pathway and ultimately dampening TGFß response. Conclusions: Altogether, our findings propose a novel function for PIKfyve in the control of myocardial fibrotic remodeling and the TGFß signaling pathway, therefore opening the way to new therapeutic perspectives to prevent adverse fibrotic remodeling using Apilimod treatment.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Hidrazonas/uso terapêutico , Morfolinas/uso terapêutico , Fosfatidilinositol 3-Quinases/fisiologia , Pirimidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/fisiologia , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/efeitos dos fármacos , Fibrose , Células HEK293 , Células HeLa , Insuficiência Cardíaca/patologia , Humanos , Hidrazonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Miocárdio/patologia , Pirimidinas/farmacologia , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo II/efeitos dos fármacos , Método Simples-Cego , Disfunção Ventricular Esquerda/prevenção & controle , Remodelação Ventricular/efeitos dos fármacos
2.
J Biol Chem ; 296: 100712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33915127

RESUMO

The retinal insulin receptor (IR) exhibits basal kinase activity equivalent to that of the liver of fed animals, but unlike the liver, does not fluctuate with feeding and fasting; it also declines rapidly after the onset of insulin-deficient diabetes. The ligand(s) that determine basal IR activity in the retina has not been identified. Using a highly sensitive insulin assay, we found that retinal insulin concentrations remain constant in fed versus fasted rats and in diabetic versus control rats; vitreous fluid insulin levels were undetectable. Neutralizing antibodies against insulin-like growth factor 2 (IGF-2), but not insulin-like growth factor 1 (IGF-1) or insulin, decreased IR kinase activity in normal rat retinas, and depletion of IGF-2 from serum specifically reduced IR phosphorylation in retinal cells. Immunoprecipitation studies demonstrated that IGF-2 induced greater phosphorylation of the retinal IR than the IGF-1 receptor. Retinal IGF-2 mRNA content was 10-fold higher in adults than pups and orders of magnitude higher than in liver. Diabetes reduced retinal IGF-2, but not IGF-1 or IR, mRNA levels, and reduced IGF-2 and IGF-1 content in vitreous fluid. Finally, intravitreal administration of IGF-2 (mature and pro-forms) increased retinal IR and Akt kinase activity in diabetic rats. Collectively, these data reveal that IGF-2 is the primary ligand that defines basal retinal IR activity and suggest that reduced ocular IGF-2 may contribute to reduced IR activity in response to diabetes. These findings may have importance for understanding the regulation of metabolic and prosurvival signaling in the retina.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Receptor de Insulina/metabolismo , Retina/metabolismo , Animais , Insulina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais
3.
Front Immunol ; 12: 763460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003077

RESUMO

H84T-Banana Lectin (BanLec) CAR-NK cells bind high mannose glycosites that decorate the SARS-CoV-2 envelope, thereby decreasing cellular infection in a model of SARS-CoV-2. H84T-BanLec CAR-NK cells are innate effector cells, activated by virus. This novel cellular agent is a promising therapeutic, capable of clearing circulating SARS-CoV-2 virus and infected cells. Banana Lectin (BanLec) binds high mannose glycans on viral envelopes, exerting an anti-viral effect. A point mutation (H84T) divorces BanLec mitogenicity from antiviral activity. SARS-CoV-2 contains high mannose glycosites in proximity to the receptor binding domain of the envelope Spike (S) protein. We designed a chimeric antigen receptor (CAR) that incorporates H84T-BanLec as the extracellular moiety. Our H84T-BanLec CAR was devised to specifically direct NK cell binding of SARS-CoV-2 envelope glycosites to promote viral clearance. The H84T-BanLec CAR was stably expressed at high density on primary human NK cells during two weeks of ex vivo expansion. H84T-BanLec CAR-NK cells reduced S-protein pseudotyped lentiviral infection of 293T cells expressing ACE2, the receptor for SARS-CoV-2. NK cells were activated to secrete inflammatory cytokines when in culture with virally infected cells. H84T-BanLec CAR-NK cells are a promising cell therapy for further testing against wild-type SARS-CoV-2 virus in models of SARS-CoV-2 infection. They may represent a viable off-the-shelf immunotherapy for patients suffering from COVID-19.


Assuntos
COVID-19/terapia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Lectinas de Plantas/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Proteínas do Envelope Viral/imunologia , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos , Células HEK293 , Humanos , Imunoterapia , Manose/metabolismo , Musa , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Envelope Viral/imunologia
4.
Cancer Immunol Res ; 7(4): 683-692, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782669

RESUMO

The development of engineered T cells to treat acute myeloid leukemia (AML) is challenging due to difficulty in target selection and the need for robust T-cell expansion and persistence. We designed a T cell stimulated to kill AML cells based on recognition of the AML-associated surface marker CLEC12A, via secretion of a CLEC12AxCD3 bispecific "engager" molecule (CLEC12A-ENG). CLEC12A-ENG T cells are specifically activated by CLEC12A, are not toxic to hematopoietic progenitor cells, and exhibit antigen-dependent AML killing. Next, we coupled stimulation of T-cell survival to triggering of a chimeric IL7 receptor with an ectodomain that binds a second AML-associated surface antigen, CD123. The resulting T cells, identified as CLEC12A-ENG.CD123IL7Rα T cells, demonstrate improved activation upon dual target recognition, kill AML, and exhibit antitumor activity in xenograft models. Enhanced T-cell activation conferred by CD123.IL7Rα was dependent both on recognition of the CD123 target and on IL7Rα-mediated downstream signaling. Expression of a chimeric IL7R targeted to a second tumor-associated antigen (TAA) should improve T-cell activity not only against hematologic malignancies, but perhaps against all cancers.


Assuntos
Leucemia Mieloide Aguda/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Interleucina-7/imunologia , Linfócitos T/imunologia , Animais , Engenharia Celular , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Subunidade alfa de Receptor de Interleucina-3/imunologia , Lectinas Tipo C/imunologia , Camundongos , Receptores Mitogênicos/imunologia
5.
Cytotherapy ; 20(10): 1259-1266, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30309710

RESUMO

Targeted adoptive immunotherapy with engineered T cells is a promising treatment for refractory hematologic malignancies. However, many patients achieving early complete remissions ultimately relapse. Immunosuppressive ligands are expressed on tumor and supportive cells in the tumor microenvironment (TME). When activated, T cells express associated "checkpoint" receptors. Binding of co-inhibitory ligands and receptors may directly contribute to T-cell functional exhaustion. It is not known whether all T cells engineered to express chimeric antigen receptors (CARs) are subject to checkpoint-mediated regulation. It is also unknown whether distinct CAR signaling moieties modulate T-cell responsiveness to these inhibitory pathways. We have, therefore, directly compared functional co-inhibition in engineered T cells identically targeted to the tumor-associated antigen CD123, but distinct in their mode of T-cell activation: via the endogenous T-cell receptor (ENG), or downstream of CD28 or 41BB-containing CARs. In all cases, we have observed antigen-independent T-cell activation associated with upregulation of the co-inhibitory receptors programmed cell death protein 1 (PD-1, CD279), Tim-3 and Lag-3. Notably, CD28.CAR T cells were uniquely susceptible to PD-1/PD-L1 mediated checkpoint inhibition. Together, our data indicate that PD-1/PD-L1 checkpoint blocking agents may be considered clinically when CD28.CAR T cells do not perform optimally in human trials.


Assuntos
Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Antígenos CD28/genética , Antígenos CD28/imunologia , Linhagem Celular Tumoral , Testes Imunológicos de Citotoxicidade/métodos , Engenharia Genética , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Subunidade alfa de Receptor de Interleucina-3/genética , Células K562 , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Ativação Linfocitária , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Linfócitos T/fisiologia , Microambiente Tumoral
6.
Proc Natl Acad Sci U S A ; 111(45): E4896-905, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25355904

RESUMO

Dynamic regulation of phosphoinositide lipids (PIPs) is crucial for diverse cellular functions, and, in neurons, PIPs regulate membrane trafficking events that control synapse function. Neurons are particularly sensitive to the levels of the low abundant PIP, phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], because mutations in PI(3,5)P2-related genes are implicated in multiple neurological disorders, including epilepsy, severe neuropathy, and neurodegeneration. Despite the importance of PI(3,5)P2 for neural function, surprisingly little is known about this signaling lipid in neurons, or any cell type. Notably, the mammalian homolog of yeast vacuole segregation mutant (Vac14), a scaffold for the PI(3,5)P2 synthesis complex, is concentrated at excitatory synapses, suggesting a potential role for PI(3,5)P2 in controlling synapse function and/or plasticity. PI(3,5)P2 is generated from phosphatidylinositol 3-phosphate (PI3P) by the lipid kinase PI3P 5-kinase (PIKfyve). Here, we present methods to measure and control PI(3,5)P2 synthesis in hippocampal neurons and show that changes in neural activity dynamically regulate the levels of multiple PIPs, with PI(3,5)P2 being among the most dynamic. The levels of PI(3,5)P2 in neurons increased during two distinct forms of synaptic depression, and inhibition of PIKfyve activity prevented or reversed induction of synaptic weakening. Moreover, altering neuronal PI(3,5)P2 levels was sufficient to regulate synaptic strength bidirectionally, with enhanced synaptic function accompanying loss of PI(3,5)P2 and reduced synaptic strength following increased PI(3,5)P2 levels. Finally, inhibiting PI(3,5)P2 synthesis alters endocytosis and recycling of AMPA-type glutamate receptors (AMPARs), implicating PI(3,5)P2 dynamics in AMPAR trafficking. Together, these data identify PI(3,5)P2-dependent signaling as a regulatory pathway that is critical for activity-dependent changes in synapse strength.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Membranas Sinápticas/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Neurônios/citologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/genética , Transporte Proteico , Receptores de AMPA/genética , Sinapses/genética , Membranas Sinápticas/genética
7.
Dev Cell ; 26(5): 511-24, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23993788

RESUMO

Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here, we identified mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML1 overexpression and TRPML1 agonists facilitate both lysosomal exocytosis and particle uptake. Using time-lapse confocal imaging and direct patch clamping of phagosomal membranes, we found that particle binding induces lysosomal PI(3,5)P2 elevation to trigger TRPML1-mediated lysosomal Ca2+ release specifically at the site of uptake, rapidly delivering TRPML1-resident lysosomal membranes to nascent phagosomes via lysosomal exocytosis. Thus phagocytic ingestion of large particles activates a phosphoinositide- and Ca2+-dependent exocytosis pathway to provide membranes necessary for pseudopod extension, leading to clearance of senescent and apoptotic cells in vivo.


Assuntos
Lisossomos/genética , Fagocitose/genética , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Envelhecimento/genética , Animais , Cálcio/metabolismo , Exocitose/genética , Regulação da Expressão Gênica , Camundongos , Tamanho da Partícula , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/antagonistas & inibidores
8.
Proc Natl Acad Sci U S A ; 109(43): 17472-7, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23047693

RESUMO

Mutations that cause defects in levels of the signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P(2)] lead to profound neurodegeneration in mice. Moreover, mutations in human FIG4 predicted to lower PI(3,5)P(2) levels underlie Charcot-Marie-Tooth type 4J neuropathy and are present in selected cases of amyotrophic lateral sclerosis. In yeast and mammals, PI(3,5)P(2) is generated by a protein complex that includes the lipid kinase Fab1/Pikfyve, the scaffolding protein Vac14, and the lipid phosphatase Fig4. Fibroblasts cultured from Vac14(-/-) and Fig4(-/-) mouse mutants have a 50% reduction in the levels of PI(3,5)P(2), suggesting that there may be PIKfyve-independent pathways that generate this lipid. Here, we characterize a Pikfyve gene-trap mouse (Pikfyve(ß-geo/ß-geo)), a hypomorph with ~10% of the normal level of Pikfyve protein. shRNA silencing of the residual Pikfyve transcript in fibroblasts demonstrated that Pikfyve is required to generate all of the PI(3,5)P(2) pool. Surprisingly, Pikfyve also is responsible for nearly all of the phosphatidylinositol-5-phosphate (PI5P) pool. We show that PI5P is generated directly from PI(3,5)P(2), likely via 3'-phosphatase activity. Analysis of tissues from the Pikfyve(ß-geo/ß-geo) mouse mutants reveals that Pikfyve is critical in neural tissues, heart, lung, kidney, thymus, and spleen. Thus, PI(3,5)P(2) and PI5P have major roles in multiple organs. Understanding the regulation of these lipids may provide insights into therapies for multiple diseases.


Assuntos
Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/biossíntese , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana , Camundongos , Camundongos Mutantes , RNA Mensageiro/genética
9.
EMBO J ; 31(16): 3442-56, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22842785

RESUMO

Normal steady-state levels of the signalling lipids PI(3,5)P(2) and PI(5)P require the lipid kinase FAB1/PIKfyve and its regulators, VAC14 and FIG4. Mutations in the PIKfyve/VAC14/FIG4 pathway are associated with Charcot-Marie-Tooth syndrome and amyotrophic lateral sclerosis in humans, and profound neurodegeneration in mice. Hence, tight regulation of this pathway is critical for neural function. Here, we examine the localization and physiological role of VAC14 in neurons. We report that endogenous VAC14 localizes to endocytic organelles in fibroblasts and neurons. Unexpectedly, VAC14 exhibits a pronounced synaptic localization in hippocampal neurons, suggesting a role in regulating synaptic function. Indeed, the amplitude of miniature excitatory postsynaptic currents is enhanced in both Vac14(-/-) and Fig4(-/-) neurons. Re-introduction of VAC14 in postsynaptic Vac14(-/-) cells reverses this effect. These changes in synaptic strength in Vac14(-/-) neurons are associated with enhanced surface levels of the AMPA-type glutamate receptor subunit GluA2, an effect that is due to diminished regulated endocytosis of AMPA receptors. Thus, VAC14, PI(3,5)P(2) and/or PI(5)P play a role in controlling postsynaptic function via regulation of endocytic cycling of AMPA receptors.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/análise , Neurônios/química , Neurônios/metabolismo , Fosfatidilinositóis/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores , Fibroblastos/química , Teste de Complementação Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana , Camundongos , Camundongos Knockout , Modelos Biológicos , Neurônios/fisiologia , Organelas/química , Sinapses/fisiologia
10.
J Biol Chem ; 287(25): 20913-21, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22547071

RESUMO

The mechanistic target of rapamycin (mTOR) complex 1 is regulated by small GTPase activators and localization signals. We examine here the role of the small GTPase Rab5 in the localization and activation of TORC1 in yeast and mammalian cells. Rab5 mutants disrupt mTORC1 activation and localization in mammalian cells, whereas disruption of the Rab5 homolog in yeast, Vps21, leads to decreased TORC1 function. Additionally, regulation of PI(3)P synthesis by Rab5 and Vps21 is essential for TORC1 function in both contexts.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Linhagem Celular , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Fosfatos de Fosfatidilinositol/genética , Transporte Proteico/fisiologia , Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina-Treonina Quinases TOR , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética
11.
PLoS Genet ; 7(6): e1002104, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21655088

RESUMO

CMT4J is a severe form of Charcot-Marie-Tooth neuropathy caused by mutation of the phosphoinositide phosphatase FIG4/SAC3. Affected individuals are compound heterozygotes carrying the missense allele FIG4-I41T in combination with a null allele. Analysis using the yeast two-hybrid system demonstrated that the I41T mutation impairs interaction of FIG4 with the scaffold protein VAC14. The critical role of this interaction was confirmed by the demonstration of loss of FIG4 protein in VAC14 null mice. We developed a mouse model of CMT4J by expressing a Fig4-I41T cDNA transgene on the Fig4 null background. Expression of the mutant transcript at a level 5 × higher than endogenous Fig4 completely rescued lethality, whereas 2 × expression gave only partial rescue, providing a model of the human disease. The level of FIG4-I41T protein in transgenic tissues is only 2% of that predicted by the transcript level, as a consequence of the protein instability caused by impaired interaction of the mutant protein with VAC14. Analysis of patient fibroblasts demonstrated a comparably low level of mutant I41T protein. The abundance of FIG4-I41T protein in cultured cells is increased by treatment with the proteasome inhibitor MG-132. The data demonstrate that FIG4-I41T is a hypomorphic allele encoding a protein that is unstable in vivo. Expression of FIG4-I41T protein at 10% of normal level is sufficient for long-term survival, suggesting that patients with CMT4J could be treated by increased production or stabilization of the mutant protein. The transgenic model will be useful for testing in vivo interventions to increase the abundance of the mutant protein.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Flavoproteínas/genética , Mutação , Alelos , Animais , Autofagia/genética , Doença de Charcot-Marie-Tooth/metabolismo , Fibroblastos/metabolismo , Flavoproteínas/metabolismo , Gliose/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Modelos Animais , Fosfatases de Fosfoinositídeos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Transfecção
12.
EMBO J ; 27(24): 3221-34, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19037259

RESUMO

The signalling lipid PI(3,5)P(2) is generated on endosomes and regulates retrograde traffic to the trans-Golgi network. Physiological signals regulate rapid, transient changes in PI(3,5)P(2) levels. Mutations that lower PI(3,5)P(2) cause neurodegeneration in human patients and mice. The function of Vac14 in the regulation of PI(3,5)P(2) was uncharacterized previously. Here, we predict that yeast and mammalian Vac14 are composed entirely of HEAT repeats and demonstrate that Vac14 exerts an effect as a scaffold for the PI(3,5)P(2) regulatory complex by direct contact with the known regulators of PI(3,5)P(2): Fig4, Fab1, Vac7 and Atg18. We also report that the mouse mutant ingls (infantile gliosis) results from a missense mutation in Vac14 that prevents the association of Vac14 with Fab1, generating a partial complex. Analysis of ingls and two additional mutants provides insight into the organization of the PI(3,5)P(2) regulatory complex and indicates that Vac14 mediates three distinct mechanisms for the rapid interconversion of PI3P and PI(3,5)P(2). Moreover, these studies show that the association of Fab1 with the complex is essential for viability in the mouse.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos/genética , Animais , Proteínas Relacionadas à Autofagia , Viabilidade Fetal , Flavoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Modelos Biológicos , Mutação de Sentido Incorreto , Monoéster Fosfórico Hidrolases , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Sequências Repetitivas de Aminoácidos , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
Proc Natl Acad Sci U S A ; 104(44): 17518-23, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17956977

RESUMO

The signaling lipid, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P(2)), likely functions in multiple signaling pathways. Here, we report the characterization of a mouse mutant lacking Vac14, a regulator of PI(3,5)P(2) synthesis. The mutant mice exhibit massive neurodegeneration, particularly in the midbrain and in peripheral sensory neurons. Cell bodies of affected neurons are vacuolated, and apparently empty spaces are present in areas where neurons should be present. Similar vacuoles are found in cultured neurons and fibroblasts. Selective membrane trafficking pathways, especially endosome-to-TGN retrograde trafficking, are defective. This report, along with a recent report on a mouse with a null mutation in Fig4, presents the unexpected finding that the housekeeping lipid, PI(3,5)P(2), is critical for the survival of neural cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Degeneração Neural/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais , Animais , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana , Camundongos , Camundongos Knockout , Degeneração Neural/genética , Degeneração Neural/patologia , Transporte Proteico
14.
J Cell Biol ; 168(5): 747-59, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15728195

RESUMO

The conserved oligomeric Golgi (COG) complex is an evolutionarily conserved multi-subunit protein complex that regulates membrane trafficking in eukaryotic cells. In this work we used short interfering RNA strategy to achieve an efficient knockdown (KD) of Cog3p in HeLa cells. For the first time, we have demonstrated that Cog3p depletion is accompanied by reduction in Cog1, 2, and 4 protein levels and by accumulation of COG complex-dependent (CCD) vesicles carrying v-SNAREs GS15 and GS28 and cis-Golgi glycoprotein GPP130. Some of these CCD vesicles appeared to be vesicular coat complex I (COPI) coated. A prolonged block in CCD vesicles tethering is accompanied by extensive fragmentation of the Golgi ribbon. Fragmented Golgi membranes maintained their juxtanuclear localization, cisternal organization and are competent for the anterograde trafficking of vesicular stomatitis virus G protein to the plasma membrane. In a contrast, Cog3p KD resulted in inhibition of retrograde trafficking of the Shiga toxin. Furthermore, the mammalian COG complex physically interacts with GS28 and COPI and specifically binds to isolated CCD vesicles.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/deficiência , Vesículas Citoplasmáticas/metabolismo , Complexo de Golgi/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Complexo I de Proteína do Envoltório/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica , Fosfoproteínas/metabolismo , Transporte Proteico/fisiologia , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Toxina Shiga/metabolismo , Proteínas de Transporte Vesicular/metabolismo
15.
J Biol Chem ; 277(52): 50396-402, 2002 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-12393890

RESUMO

Analysis of the precursors of bacterial exported proteins revealed that those having bulky hydrophobic residues at position -5 have a high incidence of Pro residues at positions -6 and -4, Val at position -3, and Ser at positions -4 and -2. This led to a hypothesis that the previously observed inhibition of processing by bulky residues at position -5 can be suppressed by introduction of Pro, Ser, or Val in the corresponding nearby positions. Subsequent mutational analysis of Escherichia coli alkaline phosphatase showed that, as it was predicted, Pro on either side of bulky hydrophobic -5 Leu, Ile, or Tyr completely restores efficiency of the maturation. Introduction of Val at position -3 also partially suppresses the inhibition imposed by -5 Leu, while a Ser residue at position -4 or -2 does not restore processing. In addition, effective maturation of a mutant with Pro residues at positions from -6 throughout -4 proved that polyproline conformation of this region is permissive for processing. To understand the effects of the mutations, we modeled a peptide substrate into the active site of the signal peptidase using the known position of the beta-lactam inhibitor. The inhibitory effect of the -5 residue and its suppression by either Pro -6 or Pro -4 can be explained if we assume that Pro-containing -6 to -4 regions adopt a polyproline conformation whereas the region without Pro residues has a beta-conformation. These results permit us to specify sequence requirements at -6, -5, and -4 positions for efficient processing and to improve the prediction of yet unknown cleavage sites.


Assuntos
Fosfatase Alcalina/química , Escherichia coli/enzimologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...