Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(27): 6320-6325, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34228474

RESUMO

Determination of the molecular Kondo temperature (TK) poses a challenge in most cases when the experimental temperature cannot be tuned to a sufficient extent. We show how this ambiguity can be resolved if additional control parameters are present, such as magnetic field and mechanical gating. We record the evolution of the differential conductance by lifting an individual molecule from the metal surface with the tip of a scanning tunneling microscope. By fitting the measured conductance spectra with the single impurity Anderson model we are able to demonstrate that the lifting tunes the junction continuously from the strongly correlated Kondo-singlet to the free spin-1/2 ground state. In the crossover regime, where TK is similar to the temperature of experiment, the fitting yields ambiguous estimates of TK varying by an order of magnitude. We show that analysis of the conductance measured in two distinct external magnetic fields can be used to resolve this problem.

2.
J Phys Condens Matter ; 30(11): 115801, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29412190

RESUMO

Ultrafast demagnetization of magnetic layers pumped by a femtosecond laser pulse is accompanied by a nonthermal spin-polarized current of hot electrons. These spin currents are studied here theoretically in a spin valve with noncollinear magnetizations. To this end, we introduce an extended model of superdiffusive spin transport that enables the treatment of noncollinear magnetic configurations, and apply it to the perpendicular spin valve geometry. We show how spin-transfer torques arise due to this mechanism and calculate their action on the magnetization present, as well as how the latter depends on the thicknesses of the layers and other transport parameters. We demonstrate that there exists a certain optimum thickness of the out-of-plane magnetized spin-current polarizer such that the torque acting on the second magnetic layer is maximal. Moreover, we study the magnetization dynamics excited by the superdiffusive spin-transfer torque due to the flow of hot electrons employing the Landau-Lifshitz-Gilbert equation. Thereby we show that a femtosecond laser pulse applied to one magnetic layer can excite small-angle precessions of the magnetization in the second magnetic layer. We compare our calculations with recent experimental results.

3.
Opt Lett ; 41(24): 5821, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973511

RESUMO

We comment on the recent Letter by Andrianov et al. [Opt. Lett.40, 3536 (2015)OPLEDP0146-959210.1364/OL.40.003536], in which they study a strongly dissipative driven bosonic mode strongly coupled to a two-level system using the quantum Monte Carlo simulations. We recalculate their quantities via sparse numerical solvers and find that their results for larger drives are incorrect, most likely due to insufficient Monte Carlo sampling in the presence of an emergent long time scale. These findings call for a corrected interpretation of the physical behavior of the studied model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...