Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 461, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452137

RESUMO

This data descriptor describes the Roessingh Research & Development-MyLeg database for activity prediction (MyPredict), containing three data sets. These data sets contain data from 55 able-bodied subjects, mean age 24 ± 2 years, measured in 85 measurement sessions. Measurement sessions consisted of trials containing sitting, standing, overground walking, stair ascent, stair descent, ramp ascent, ramp descent, walking on uneven terrain and walking in simulated confined spaces. Subjects were measured using eight inertial measurement units in combination with different types of sEMG. Recorded kinematics consisted of joint angles, sensor accelerations, angular velocity, orientation and virtual marker positions. sEMG was recorded using bipolar sEMG, multi-array sEMG or a combination of both. All data showed excellent correlation with other online available data sets. The data reported in this descriptor forms a solid basis for research into myoelectric pattern recognition, myoelectric control development and electromyography to be used in data-driven applications.


Assuntos
Marcha , Caminhada , Humanos , Adulto Jovem , Adulto , Eletromiografia , Fenômenos Biomecânicos , Extremidade Inferior
2.
Front Robot AI ; 9: 869476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546902

RESUMO

Proportional control using surface electromyography (EMG) enables more intuitive control of a transfemoral prosthesis. However, EMG is a noisy signal which can vary over time, giving rise to the question what approach for knee torque estimation is most suitable for multi-day control. In this study we compared three different modelling frameworks to estimate knee torque in non-weight-bearing situations. The first model contained a convolutional neural network (CNN) which mapped EMG to knee torque directly. The second used a neuromusculoskeletal model (NMS) which used EMG, muscle tendon unit lengths and moment arms to compute knee torque. The third model (Hybrid) used a CNN to map EMG to specific muscle activation, which was used together with NMS components to compute knee torque. Multi-day measurements were conducted on ten able-bodied participants who performed non-weight bearing activities. CNN had the best performance in general and on each day (Normalized Root Mean Squared Error (NRMSE) 9.2 ± 4.4%). The Hybrid model (NRMSE 12.4 ± 3.4%) was able to outperform NMS (NRMSE 14.3 ± 4.2%). The NMS model showed no significant difference between measurement days. The CNN model and Hybrid models had significant performance differences between the first day and all other days. CNNs are suited for multi-day torque estimation in terms of error rate, outperforming the other two model types. NMS was the only model type which was robust over all days. This study investigated the behavior of three model types over multiple days, giving insight in the most suited modelling approach for multi-day torque estimation to be used in prosthetic control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...