Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18363, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112724

RESUMO

The combination of anti-angiogenic treatment and immunotherapy presents a promising strategy against colon cancer. Interleukin-17F (IL-17F) emerges as a critical immune cell cytokine expressed in colonic epithelial cells, demonstrating potential in inhibiting angiogenesis. In order to clarify the roles of IL-17F in the colon cancer microenvironment and elucidate its mechanism, we established a mouse colon carcinoma cell line CT26 overexpressing IL-17F and transplanted it subcutaneously into syngeneic BALB/c mice. We also analyzed induced colon tumor in IL-17F knockout and wild type mice. Our results demonstrated that IL-17F could suppress colon tumor growth in vivo with inhibited angiogenesis and enhanced recruitment of cysteine-cysteine motif chemokine receptor 6 (CCR6) positive immune cells. Additionally, IL-17F suppressed the tube formation, cell growth and migration of endothelial cells EOMA in vitro. Comprehensive bioinformatics analysis of transcriptome profiles between EOMA cells and those treated with three different concentrations of IL-17F identified 109 differentially expressed genes. Notably, a potential new target, Caspase 4, showed increased expressions after IL-17F treatment in endothelial cells. Further molecular validation revealed a novel downstream signaling for IL-17F: IL-17F enhanced Caspase 4/GSDMD signaling of endothelial cells, CT26 cells and CT26 transplanted tumors, while IL-17F knockout colon tumors exhibited decreased Caspase 4/GSDMD signaling. The heightened expression of the GSDMD N-terminus, coupled with increased cellular propidium iodide (PI) uptake and lactate dehydrogenase (LDH) release, revealed that IL-17F promoted pyroptosis of endothelial cells. Altogether, IL-17F could modulate the colon tumor microenvironment with inhibited angiogenesis, underscoring its potential as a therapeutic target for colon cancer.


Assuntos
Neoplasias do Colo , Células Endoteliais , Interleucina-17 , Camundongos Endogâmicos BALB C , Piroptose , Animais , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , Interleucina-17/metabolismo , Camundongos , Células Endoteliais/metabolismo , Linhagem Celular Tumoral , Caspases Iniciadoras/metabolismo , Caspases Iniciadoras/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Camundongos Knockout , Microambiente Tumoral , Humanos , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA