Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(8): 1175-1184, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305434

RESUMO

Ascorbic acid (AA), which plays a vital role in the metabolism of the human body, is closely correlated with various diseases, including rheumatoid arthritis, scurvy, Parkinson's disease, urinary stones, and diarrhea. The detection of AA is of great significance for early prevention and diagnosis of related diseases. In this paper, a high-performance photoelectrochemical (PEC) sensor was constructed based on cadmium sulfide-gold (CdS-Au) composite nanomaterials for ultrasensitive ascorbic acid (AA) detection. Due to the localized surface plasmon resonance (LSPR) effect of gold nanoparticles (AuNPs), the PEC performance of CdS-Au composite nanomaterials was significantly improved compared to CdS semiconductor nanomaterials. Under the optimal conditions, the AA concentration was linearly related to the photocurrent signal in the range of 0.01 µM-200 µM, with the detection limit being 0.2 nM (S/N = 3) and the sensitivity being 642.9 µA mM-1 cm-2. In addition, the mechanism of the PEC sensor based on CdS-Au composite nanomaterials for ultrasensitive AA detection was discussed. Lastly, the self-constructed PEC sensors have been successfully applied in detecting AA in vitamin C tablets and actual blood samples, meeting the detection criteria required by the Chinese Pharmacopoeia (CP, 2020 edition). The self-fabricated PEC sensors in this paper are expected to be used for quality assessment of AA-related drugs and diagnosis of relevant diseases.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Humanos , Ressonância de Plasmônio de Superfície , Ouro , Ácido Ascórbico
2.
ACS Appl Mater Interfaces ; 15(42): 49727-49738, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37842985

RESUMO

Si@C as a high specific capacity anode material for lithium batteries (LIBs) has attracted a lot of attention. However, the severe volume change during lithium de-embedding causes repeated rupture/reconstruction of the solid electrolyte interphase (SEI), resulting in poor cycling stability of the Si-based battery system and thus hindering its application in commercial batteries. Using electrolyte additives to form an excellent SEI is considered to be a cost-effective method to meet this challenge. Here, the classical film-forming additive vinyl carbonate (VC), and the newly emerging lithium salt additive lithium difluorophosphate (LiDFP), are chosen as synergistic additives to improve the electrode-electrolyte interface properties. Final results show that the VC additive generates flexible polycarbonate components at the electrode/electrolyte interface, preventing the fragmentation of Si particles. However, the organic components show high impedance, inhibiting the fast transport of Li+. This defect can be supplemented from the decomposition substances of the LiDFP additive. The derived inorganic products, such as LiF and Li3PO4, can strengthen the reaction kinetics of the electrode, reduce the interfacial impedance, and promote the Li+ transport. Thus, the synergistic effect of VC and LiDFP additives builds an effective SEI with good flexibility and high ionic conductivity and then significantly improves the cycling and rate stability of Si@C anodes. The experimental results show that the utilization of LiDFP and VC additives to modify the Si@C anode interface enhances the capacity retention of the Si@C/Li half-cell after 100 cycles from 68.2% to 85.1%. Besides, the possible mechanism of action between VC and LiDFP is proposed by using the spectral characterization technique and density functional theory (DFT) calculations. This research opens up a new possibility for improvement of SEI, and provides a simple way to achieve high-performance Si-based LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...