Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(40): 8280-8291, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-32924506

RESUMO

The kinetic data of cyclopentadiene C5H6 oxidation reactions are significant for the construction of aromatics oxidation mechanism because cyclopentadiene C5H6 has been proved to be an important intermediate in the aromatics combustion. Kinetics for the elementary reactions on the potential energy surface (PES) relevant for the C5H6 + HO2 reaction are studied in this work. Stationary points on the PES are calculated by employing the CCSD(T)/cc-pVTZ//B3LYP/6-311G(d,p) level of theory. High-pressure limit and pressure-dependent rate constants for elementary reactions on this PES are calculated using conventional transition state theory (TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master equation (RRKM/ME) theory. In this work, the reaction channels for the C5H6 + HO2 reaction, which include H-abstraction channels from C5H6 by HO2 to form the C5H5 + H2O2 and the addition channels through well-skipping pathways to form the bimolecular products C5H7 + O2 or C5H6O + OH, or through C5H7O2 stabilization and its unimolecular decomposition to form the bimolecular products C5H7 + O2 or C5H6O + OH, namely sequential pathways, are studied. Also, the consuming reaction channels for the compounds C5H6O and C5H7 in the addition products are studied. The dominant reaction channels for these reactions are unraveled through comparing the energy barriers and rate constants of all elementary reactions and it is found: (1) HO2 addition to cyclopentadiene C5H6 is more important than direct H-abstraction. (2) in the HO2 addition channels, the well-skipping pathways and sequential pathways are competing and the well-skipping pathways will be favor in the higher pressures and the sequential pathways will be favor in the higher temperature. (3) The major consumption reaction channel for the five-member-ring compound C5H6O is the reaction channel to form C4H6 + CO and the major consumption reaction channel for the five-member-ring compound C5H7 is the reaction channel to form C3H5 + C2H2. High-pressure limit rate constants and pressure-dependent rate constants for elementary reactions on the PES are calculated, which will be useful in modeling the oxidation of aromatic compounds at low- and medium-temperatures.

2.
J Phys Chem A ; 122(21): 4869-4881, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29757648

RESUMO

The isodesmic reaction method is applied to calculate the potential energy surface (PES) along the reaction coordinates and the rate constants of the barrierless reactions for unimolecular dissociation reactions of alkanes to form two alkyl radicals and their reverse recombination reactions. The reaction class is divided into 10 subclasses depending upon the type of carbon atoms in the reaction centers. A correction scheme based on isodesmic reaction theory is proposed to correct the PESs at UB3LYP/6-31+G(d,p) level. To validate the accuracy of this scheme, a comparison of the PESs at B3LYP level and the corrected PESs with the PESs at CASPT2/aug-cc-pVTZ level is performed for 13 representative reactions, and it is found that the deviations of the PESs at B3LYP level are up to 35.18 kcal/mol and are reduced to within 2 kcal/mol after correction, indicating that the PESs for barrierless reactions in a subclass can be calculated meaningfully accurately at a low level of ab initio method using our correction scheme. High-pressure limit rate constants and pressure dependent rate constants of these reactions are calculated based on their corrected PESs and the results show the pressure dependence of the rate constants cannot be ignored, especially at high temperatures. Furthermore, the impact of molecular size on the pressure-dependent rate constants of decomposition reactions of alkanes and their reverse reactions has been studied. The present work provides an effective method to generate meaningfully accurate PESs for large molecular system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...