Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410010, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926253

RESUMO

Porous frameworks with controlled pore structure and tunable aperture are greatly demanded. However, precise synthesis of this kind of materials is a formidable challenge. Herein, we report the fabrication of two-dimensional (2D) supramolecular polymer frameworks using a precisely synthesized rod-like helical polyisocyanide as link. Four three-arm star-shaped polyisocyanides with the degree of the polymerization of 10, 20, 30 and 40, and having 2-ureido-4[1H]-pyrimidinone (UPy) terminals were synthesized. 2D-Crystalline polymer frameworks with apertures of 5.3, 10.1, 13.9, and 19.1 nm were respectively obtained through intermolecular hydrogen bonding interaction between the terminal Upy units. The pore aperture is dependent on the length of polyisocyanide backbone. Thus, well-defined supramolecular polymer frameworks with controlled and uniform hexagonal pores were obtained, as proved by small-angle X-ray scattering (synchrotron radiation facility), atomic force microscopy, and Brunauer-Emmett-Teller analyses. The frameworks with uniform large pore aperture were used to purify nanomaterials and immobilize biomacromolecules. For instance, the membranes of the polymer frameworks could size-fractionation of silver nanoparticles into uniform nanoparticles with very low dispersity. The frameworks with large aperture facilitated the inclusion of myoglobin and enhanced the stability and catalytic activity.

2.
J Med Chem ; 67(5): 3860-3873, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38407934

RESUMO

Unfractionated heparin (UFH) and low-molecular-weight heparins (LMWHs) are widely applied for surgical procedures and extracorporeal therapies, which, however, suffer bleeding risk. Protamine, the only clinically approved antidote, can completely neutralize UFH, but only partially neutralizes LMWHs, and also has a number of safety drawbacks. Here, we show that caltrop-like multicationic small molecules can completely neutralize both UFH and LMWHs. In vitro and ex vivo assays with plasma and whole blood and in vivo assays with mice and rats support that the lead compound is not only superior to protamine by displaying higher neutralization activity and broader therapeutic windows but also biocompatible. The effective neutralization dose and the maximum tolerated dose of the lead compound are determined to be 0.4 and 25 mg/kg in mice, respectively, suggesting good promise for further preclinical studies.


Assuntos
Heparina de Baixo Peso Molecular , Heparina , Ratos , Camundongos , Animais , Heparina/uso terapêutico , Heparina de Baixo Peso Molecular/farmacologia , Heparina de Baixo Peso Molecular/uso terapêutico , Antídotos/farmacologia , Antídotos/uso terapêutico , Protaminas/farmacologia , Bioensaio , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico
3.
J Exp Clin Cancer Res ; 43(1): 59, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413999

RESUMO

BACKGROUND: Hematological metastasis has been recognized as a crucial factor contributing to the high rates of metastasis and mortality observed in colorectal cancer (CRC). Notably, exosomes derived from cancer cells participate in the formation of CRC pre-metastatic niches; however, the mechanisms underlying their effects are largely unknown. While our preliminary research revealed the role of exosome-derived disintegrin and metalloproteinase 17 (ADAM17) in the early stages of CRC metastasis, the role of exosomal ADAM17 in CRC hematogenous metastasis remains unclear. METHODS: In the present study, we isolated and purified exosomes using ultracentrifugation and identified exosomal proteins through quantitative mass spectrometry. In vitro, co-culture assays were conducted to evaluate the impact of exosomal ADAM17 on the permeability of the blood vessel endothelium. Vascular endothelial cell resistance, the cell index, membrane protein separation, flow cytometry, and immunofluorescence were employed to investigate the mechanisms underlying exosomal ADAM17-induced vascular permeability. Additionally, a mouse model was established to elucidate the role of exosomal ADAM17 in the modulation of blood vessel permeability and pre-metastatic niche formation in vivo. RESULTS: Our clinical data indicated that ADAM17 derived from the circulating exosomes of patients with CRC could serve as a blood-based biomarker for predicting metastasis. The CRC-derived exosomal ADAM17 targeted vascular endothelial cells, thus enhancing vascular permeability by influencing vascular endothelial cadherin cell membrane localization. Moreover, exosomal ADAM17 mediated the formation of a pre-metastatic niche in nude mice by inducing vascular leakage, thereby promoting CRC metastasis. Nonetheless, ADAM17 selective inhibitors effectively reduced CRC metastasis in vivo. CONCLUSIONS: Our results suggest that exosomal ADAM17 plays a pivotal role in the hematogenous metastasis of CRC. Thus, this protein may serve as a valuable blood-based biomarker and potential drug target for CRC metastasis intervention.


Assuntos
Neoplasias Colorretais , Exossomos , MicroRNAs , Animais , Camundongos , Humanos , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Permeabilidade Capilar , Camundongos Nus , Biomarcadores/metabolismo , Neoplasias Colorretais/patologia , Exossomos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína ADAM17/metabolismo
4.
Commun Biol ; 7(1): 139, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291185

RESUMO

The nasal cavity harbors diverse microbiota that contributes to human health and respiratory diseases. However, whether and to what extent the host genome shapes the nasal microbiome remains largely unknown. Here, by dissecting the human genome and nasal metagenome data from 1401 healthy individuals, we demonstrated that the top three host genetic principal components strongly correlated with the nasal microbiota diversity and composition. The genetic association analyses identified 63 genome-wide significant loci affecting the nasal microbial taxa and functions, of which 2 loci reached study-wide significance (p < 1.7 × 10-10): rs73268759 within CAMK2A associated with genus Actinomyces and family Actinomycetaceae; and rs35211877 near POM121L12 with Gemella asaccharolytica. In addition to respiratory-related diseases, the associated loci are mainly implicated in cardiometabolic or neuropsychiatric diseases. Functional analysis showed the associated genes were most significantly expressed in the nasal airway epithelium tissue and enriched in the calcium signaling and hippo signaling pathway. Further observational correlation and Mendelian randomization analyses consistently suggested the causal effects of Serratia grimesii and Yokenella regensburgei on cardiometabolic biomarkers (cystine, glutamic acid, and creatine). This study suggested that the host genome plays an important role in shaping the nasal microbiome.


Assuntos
Doenças Cardiovasculares , Microbiota , Humanos , Estudo de Associação Genômica Ampla , Nariz , Microbiota/genética , Variação Genética
5.
J Med Chem ; 67(3): 2176-2187, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38284525

RESUMO

Long-acting neuromuscular blocks followed by rapid reversal may provide prolonged surgeries with improved conditions by omitting repetitive or continuous administration of the neuromuscular blocking agent (NMBA), eliminating residual neuromuscular block and minimizing postoperative recovery, which, however, is not clinically available. Here, we demonstrate that imidazolium-based macrocycles (IMCs) and acyclic cucurbit[n]urils (ACBs) can form such partners by functioning as long-acting NMBAs and rapid reversal agents through a pseudo[2]catenation mechanism based on stable complexation with Ka values of over 109 M-1. In vivo experiments with rats reveal that, at the dose of 2- and 3-fold ED90, one IMC attains a duration of action corresponding to 158 or 442 min for human adults, covering most of prolonged surgeries. The block can be reversed by one ACB with recovery time significantly shorter than that achieved by sugammadex for reversing the block of rocuronium, the clinically most widely used intermediate-acting NMBA.


Assuntos
Catenanos , Bloqueio Neuromuscular , gama-Ciclodextrinas , Adulto , Humanos , Animais , Ratos , Sugammadex/farmacologia , Rocurônio
6.
Bioresour Technol ; 393: 130067, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989418

RESUMO

Electrical assistance is an effective strategy for promoting anaerobic digestion (AD) under ammonia stress. However, the underlying mechanism of electrical assistance affecting AD is insufficiently understood. Here, electrical assistance to AD under 5 g N/L ammonia stress was provided, by employing a 0.6 V voltage to the carbon electrodes. The results demonstrated remarkable enhancements in methane production (104.6 %) and the maximal methane production rate (207.7 %). The critical segment facilitated by electro-stimulation was the microbial metabolism of propionate-to-methane, rather than ammonia removal. Proteins in extracellular polymer substances were enriched, boosting microbial resilience to ammonia intrusion. Concurrently, the promoted humic/fulvic-substances amplified the microbial electron transfer capacity. Metagenomics analysis identified the upsurge of propionate oxidation at the anode (by e.g. unclassified_c__Bacteroidia), and the stimulations of acetoclastic and direct interspecies electron transfer-dependent CO2-reducing methanogenesis at the cathode (by e.g. Methanothrix). This study provides novel insights into the effect of electrical assistance on ammonia-stressed AD.


Assuntos
Amônia , Propionatos , Propionatos/metabolismo , Anaerobiose , Elétrons , Metano/metabolismo , Reatores Biológicos
7.
Bioresour Technol ; 394: 130203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109977

RESUMO

Excessive ammonia stresses anaerobic digestion (AD) significantly. Although there has been progress in understanding AD under ammonia exposure, investigations on AD liberated from ammonia exposure are limited. Here, the recovery capability of AD from ammonia stress was evaluated, by examining specific methanogenic activity, energy-conserving capability, microbial community succession, and metabolic pathway reconstruction. The findings demonstrated that ammonia stress relief resulted in < 50% methane recovery, with propionate conversion identified as the critical impediment to AD reactivation. Energy generation could not recovered either. Efforts to mitigate ammonia stress failed to restore acetoclastic methanogens, e.g., Methanothrix soehngenii, and proved futile in awakening propionate oxidizers, e.g., Desulfobulbus. Interestingly, a symbiotic metabolism emerged, prevailing in stress-relieved AD due to its energy-conserving advantage. This study underscores the importance of targeted interventions, including stimulating acetoclastic methanogenesis, propionate oxidation, and energy generation, as priorities for AD recovery following ammonia stress, rather than focusing solely on ammonia level management.


Assuntos
Euryarchaeota , Propionatos , Anaerobiose , Amônia/metabolismo , Reatores Biológicos , Euryarchaeota/metabolismo , Metano
9.
Cartilage ; : 19476035231200336, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724835

RESUMO

OBJECTIVE: Osteoarthritis (OA) is a common degenerative joint disease. The occurrence of OA slowly destroys the soft tissue structure of the patient's joint. Severe cases could lead to disability. Current studies had shown that inhibition of chondrocytes pyroptosis could slow down the progression of OA. Our work aimed to explore the specific mechanisms and ways of regulating this process. DESIGN: In this work, the level of N6-methyladenosine (m6A) in clinical tissues was detected by ribonucleic acid (RNA) m6A dot blot. qRT-PCR (quantitative real-time polymerase chain reaction) was used to detect the messenger RNA (mRNA) expression level of m6A modified enzyme in clinical tissues. MTT (3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromid) and flow cytometry were used to detect the effect of sh-METTL3 (methyltransferase like 3) and NIMA-related kinase 7 (NEK7) transfection on chondrocytes pyroptosis in OA. Western blot was used to detect the protein expression levels of pyroptosis-related proteins. ELISA (enzyme-linked immunosorbent assay) was used to measure the protein concentration of inflammatory cytokines. The SRAMP online database was used to predict the m6A site of NEK7. HE staining was used to assess the progression of OA in mice. RESULTS: The level of m6A in clinical samples of OA patients was higher, and METTL3 was significantly higher expressed in clinical samples of OA patients. We provided evidence that low expression of METTL3 inhibited chondrocytes pyroptosis. In addition, Rescue experiments and in vivo experiments had shown that METTL3 in combination with NEK7 inhibited the progression of OA by promoting chondrocytes pyroptosis. CONCLUSIONS: METTL3 regulates m6A modification of NEK7 and inhibits OA progression.

10.
Appl Radiat Isot ; 201: 111024, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725889

RESUMO

The beam dynamics optimization study of Rhodotron electron accelerator for irradiation sterilization is introduced in this paper. The Rhodotron accelerator acceleration principle and the RF field distribution in the coaxial resonant cavity are described in detail. Beam dynamics in the Rhodotron accelerator are analyzed from both transverse and longitudinal directions. Beam dynamics of two kinds of Rhodotron electron accelerators with maximum beam energy of 10 MeV and 40 MeV were optimized based on multi-objective genetic algorithm. The key parameters of Rhodotron accelerators are determined, and the influence of some parameters on the overall acceleration effect is quantitatively analyzed. This paper provides some references for the research, manufacture, installation, and commissioning of this type of accelerator.

11.
J Hazard Mater ; 460: 132447, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37677971

RESUMO

Mn(II) is among the most efficient catalysts for the periodate (PI)-based oxidation process. In-situ formed colloidal MnO2 simultaneously serves as the catalyst and oxidant during the degradation of organic contaminants by PI. Here, it is revealed that the complexation of Mn(II) by ethylene diamine tetraacetic acid (EDTA) further enhances the performance of PI-based oxidation in the selective degradation of organic contaminants. As evidenced by methyl phenyl sulfoxide probing, 18O-isotope labeling, and mass spectroscopy, EDTA complexation modulates the reaction pathway between Mn(II) and PI, triggering the generation of high-valent manganese-oxo (MnV-oxo) as the dominant reactive species. PI mediates the single-electron oxidation of Mn(II) to Mn(III), which is stabilized by EDTA complexation and then further oxidized by PI via the oxygen-atom transfer step, ultimately producing the MnV-oxo species. Ligands analogous to EDTA, namely, [S,S]-ethylenediaminedisuccinic acid and L-glutamic acid N,N-diacetic acid, also enhances the Mn(II)/PI process and favors MnV-oxo as the dominant species. This study demonstrates that functional ligands can tune the efficiency and reaction pathways of Mn(II)-catalyzed peroxide and peroxyacid-based oxidation processes.

12.
Adv Sci (Weinh) ; 10(28): e2300050, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548643

RESUMO

The skin is the largest organ in the human body. Various skin environments on its surface constitutes a complex ecosystem. One of the characteristics of the skin micro-ecosystem is low biomass, which greatly limits a comprehensive identification of the microbial species through sequencing. In this study, deep-shotgun sequencing (average 21.5 Gigabyte (Gb)) from 450 facial samples and publicly available skin metagenomic datasets of 2069 samples to assemble a Unified Human Skin Genome (UHSG) catalog is integrated. The UHSG encompasses 813 prokaryotic species derived from 5779 metagenome-assembled genomes, among which 470 are novel species covering 20 phyla with 1385 novel assembled genomes. Based on the UHSG, the core functions of the skin microbiome are described and the differences in amino acid metabolism, carbohydrate metabolism, and drug resistance functions among different phyla are identified. Furthermore, analysis of secondary metabolites of the near-complete genomes further find 1220 putative novel secondary metabolites, several of which are found in previously unknown genomes. Single nucleotide variant (SNV) reveals a possible skin protection mechanism: the negative selection process of the skin environment to conditional pathogens. UHSG offers a convenient reference database that will facilitate a more in-depth understanding of the role of skin microorganisms in the skin.

13.
Sci Rep ; 13(1): 13525, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598279

RESUMO

Fine needle aspiration (FNA) biopsy of thyroid nodules is a safe, cost-effective, and accurate diagnostic method for detecting thyroid cancer. However, about 10% of initial FNA biopsy samples from patients are non-diagnostic and require repeated FNA, which delays the diagnosis and appropriate care. On-site evaluation of the FNA sample can be performed to filter out non-diagnostic FNA samples. Unfortunately, it involves a time-consuming staining process, and a cytopathologist has to be present at the time of FNA. To bypass the staining process and expert interpretation of FNA specimens at the clinics, we developed a deep learning-based ensemble model termed FNA-Net that allows in situ screening of adequacy of unstained thyroid FNA samples smeared on a glass slide which can decrease the non-diagnostic rate in thyroid FNA. FNA-Net combines two deep learning models, a patch-based whole slide image classifier and Faster R-CNN, to detect follicular clusters with high precision. Then, FNA-Net classifies sample slides to be non-diagnostic if the total number of detected follicular clusters is less than a predetermined threshold. With bootstrapped sampling, FNA-Net achieved a 0.81 F1 score and 0.84 AUC in the precision-recall curve for detecting the non-diagnostic slides whose follicular clusters are less than six. We expect that FNA-Net can dramatically reduce the diagnostic cost associated with FNA biopsy and improve the quality of patient care.


Assuntos
Aprendizado Profundo , Humanos , Biópsia por Agulha Fina , Glândula Tireoide , Vidro , Rememoração Mental
14.
Sci Total Environ ; 898: 165478, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451437

RESUMO

Mechanical stability of soil aggregates is important for resisting external disturbances in slope soils. Biochar (BC) is widely used in slope remediation. However, biochar application may not be conducive to the formation of mechanical-stable soil aggregates, and the effects of biochar additions on the mechanical stability of soil aggregates in slope restoration remain largely unclear. In this context, an incubation experiment was conducted in this study with four biochar levels added to artificial soil, namely 0 % (BC0), 1.5 % (BC1), 3 % (BC2), and 4.5 % (BC3), corresponding approximately to 0, 0.77, 1.53 and 2.30 M ha-1, respectively. The contributions of different soil aggregate fractions to maintaining the mechanical stability of aggregates, as well as the main influencing factors and pathways of biochar additions on soil aggregate stability in a dynamic renewal process of aggregates, were investigated in this study. The results showed a decreasing trend in the mean weight diameter (MWD) with increasing biochar levels and BC1 has no significant difference with BC0, showing MWD values of 2.74 and 2.75, respectively. In contrast, BC3 is significantly lower MWD value of 2.18. The BC3 exhibited negative impact on the mechanical stability of the aggregates. Redundancy analysis (RDA) showed that large macroaggregates (>5 mm) exhibited a stronger contribution on the aggregate mechanical stability between all soil aggregate fractions. The random forest (RF) algorithm and structural equation modeling (SEM) indicated that microaggregate-associated soil organic carbon (SOC) contents and soil pH values were the main factors driving the changes in the aggregate mechanical stability caused by biochar applications. Indeed, the biochar level of 1.5 % maintained the stability of macroaggregates and increased the microaggregate-associated SOC content by 35.7 %, which was conducive to the formation of microaggregates within macroaggregates. Our study suggests that the application of biochar at a level of 1.5 % is more beneficial for maintaining the mechanical stability of artificial soil aggregates.

15.
Environ Sci Technol ; 57(32): 12094-12104, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490389

RESUMO

In this study, Ru(III) ions were utilized to activate periodate (PI) for oxidation of trace organic pollutants (TOPs, e.g., carbamazepine (CBZ)). The Ru(III)/PI system can significantly promote the oxidation of CBZ in a wide initial pH range (3.0-11.0) at 1 µM Ru(III), showing much higher performance than transition metal ions (i.e., Fe(II), Co(II), Zn(II), Fe(III), Cu(II), Ni(II), Mn(II), and Ce(III)) and noble metal ion (i.e., Ag(I), Pd(II), Pt(II), and Ir(III)) activated PI systems. Probe experiments, UV-vis spectra, and X-ray absorption near-edge structure (XANES) spectra confirmed high-valent Ru-oxo species (Ru(V)=O) as the dominant oxidant in the process. Because of the dominant role of Ru(V)=O, the Ru(III)/PI process exhibited a remarkable selectivity and strong anti-interference in the oxidation of TOPs in complex water matrices. The Ru(V)=O species can undertake 1-e- and 2-e- transfer reactions via the catalytic cycles of Ru(V)=O → Ru(IV) → Ru(III) and Ru(V)=O → Ru(III), respectively. The utilization efficiency of PI in the Ru(III)/PI process for the oxidation of TOPs can approach 100% under optimal conditions. PI stoichiometrically transformed into IO3- without production of undesired iodine species (e.g., HOI and I2). This study developed an efficient and environmentally benign advanced oxidation process for rapid removal of TOPs and enriched understandings on reactivity of Ru(V)=O and Ru catalytic cycles.


Assuntos
Poluentes Ambientais , Compostos Férricos , Metais , Oxirredução , Água/química
16.
Environ Sci Technol ; 57(25): 9394-9404, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37311080

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy using sterically hindered amine is extensively applied to detect singlet oxygen (1O2) possibly generated in advanced oxidation processes. However, EPR-detectable 1O2 signals were observed in not only the 1O2-dominated hydrogen peroxide (H2O2)/hypochlorite (NaClO) reaction but surprisingly also the 1O2-absent Fe(II)/H2O2, UV/H2O2, and ferrate [Fe(VI)] process with even stronger intensities. By taking advantage of the characteristic reaction between 1O2 and 9,10-diphenyl-anthracene and near-infrared phosphorescent emission of 1O2, 1O2 was excluded in the Fe(II)/H2O2, UV/H2O2, and Fe(VI) process. The false detection of 1O2 was ascribed to the direct oxidation of hindered amine to piperidyl radical by reactive species [e.g., •OH and Fe(VI)/Fe(V)/Fe(IV)] via hydrogen transfer, followed by molecular oxygen addition (forming a piperidylperoxyl radical) and back reaction with piperidyl radical to generate a nitroxide radical, as evidenced by the successful identification of a piperidyl radical intermediate at 100 K and theoretical calculations. Moreover, compared to the highly oxidative species (e.g., •OH and high-valence Fe), the much lower reactivity of 1O2 and the profound nonradiative relaxation of 1O2 in H2O resulted it too selective and inefficient in organic contaminant destruction. This study demonstrated that EPR-based 1O2 detection could be remarkably misled by common oxidative species and thereby jeopardize the understandings on 1O2.


Assuntos
Peróxido de Hidrogênio , Oxigênio Singlete , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Peróxido de Hidrogênio/química , Oxigênio , Oxirredução , Compostos Ferrosos
17.
Front Oncol ; 13: 1190987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234977

RESUMO

Background: Accurate preoperative assessment of surgical difficulty is crucial to the success of the surgery and patient safety. This study aimed to evaluate the difficulty for endoscopic resection (ER) of gastric gastrointestinal stromal tumors (gGISTs) using multiple machine learning (ML) algorithms. Methods: From December 2010 to December 2022, 555 patients with gGISTs in multi-centers were retrospectively studied and assigned to a training, validation, and test cohort. A difficult case was defined as meeting one of the following criteria: an operative time ≥ 90 min, severe intraoperative bleeding, or conversion to laparoscopic resection. Five types of algorithms were employed in building models, including traditional logistic regression (LR) and automated machine learning (AutoML) analysis (gradient boost machine (GBM), deep neural net (DL), generalized linear model (GLM), and default random forest (DRF)). We assessed the performance of the models using the areas under the receiver operating characteristic curves (AUC), the calibration curve, and the decision curve analysis (DCA) based on LR, as well as feature importance, SHapley Additive exPlanation (SHAP) Plots and Local Interpretable Model Agnostic Explanation (LIME) based on AutoML. Results: The GBM model outperformed other models with an AUC of 0.894 in the validation and 0.791 in the test cohorts. Furthermore, the GBM model achieved the highest accuracy among these AutoML models, with 0.935 and 0.911 in the validation and test cohorts, respectively. In addition, it was found that tumor size and endoscopists' experience were the most prominent features that significantly impacted the AutoML model's performance in predicting the difficulty for ER of gGISTs. Conclusion: The AutoML model based on the GBM algorithm can accurately predict the difficulty for ER of gGISTs before surgery.

18.
Front Genet ; 14: 1109991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992705

RESUMO

Background: Kidney renal clear cell carcinoma (KIRC) is a representative histologic subtype of renal cell carcinoma (RCC). RCC exhibits a strong immunogenicity with a prominent dysfunctional immune infiltration. Complement C1q C chain (C1QC) is a polypeptide in serum complement system and is involved in tumorigenesis and the modulation of tumor microenvironment (TME). However, researches have not explored the effect of C1QC expression on prognosis and tumor immunity of KIRC. Methods: The difference in a wide variety of tumor tissues and normal tissues in terms of the C1QC expression was detected using TIMER and TCGA portal databases, and further validation of protein expression of C1QC was conducted via Human Protein Atlas. Then, the associations of C1QC expression with clinicopathological data and other genes were studied with the use of UALCAN database. Subsequently, the association of C1QC expression with prognosis was predicted by searching the Kaplan-Meier plotter database. A protein-protein interaction (PPI) network with the Metascape database was built using STRING software, such that the mechanism underlying the C1QC function can be studied in depth. The TISCH database assisted in the evaluation of C1QC expression in different cell types in KIRC at the single-cell level. Moreover, the association of C1QC and the infiltration level of tumor immune cell was assessed using TIMER platform. The TISIDB website was selected to deeply investigate the Spearman correlation between C1QC and immune-modulator expression. Lastly, how C1QC affected the cell proliferation, migration, and invasion in vitro was assessed using knockdown strategies. Results: KIRC tissues had notably upregulated C1QC level in comparison with adjacent normal tissues, with showed a positive relevance to clinicopathological features including tumor stage, grade, and nodal metastasis, and a negative relevance to clinical prognosis in KIRC. C1QC knockdown inhibited KIRC cell proliferation, migration, and invasion, as indicated by the results of the in vitro experiment. Furthermore, functional and pathway enrichment analysis demonstrated that C1QC was involved in immune system-related biological processes. According to single-cell RNA analysis, C1QC exhibited a specific upregulation in macrophages cluster. Additionally, there was an obvious association of C1QC and a wide variety of tumor-infiltrating immune cells in KIRC. Also, high C1QC expression presented inconsistent prognosis in different enriched immune cells subgroups in KIRC. Immune factors might contribute to C1QC function in KIRC. Conclusion: C1QC is qualified to predict KIRC prognosis and immune infiltration biologically. Targeting C1QC may bring new hope for the treatment of KIRC.

19.
Clean Technol Environ Policy ; : 1-17, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36643617

RESUMO

This study aims to propose a new process design, simulation, and techno-economic analysis of an integrated process plant that produces glucose and furfural from palm oil empty fruit bunches (EFB). In this work, an Aspen Plus-based simulation has been established to develop a process flow diagram of co-production of glucose and furfural along with the mass and energy balances. The plant's economics are analyzed by calculating the fixed capital income (FCI), operating costs, and working capital. In contrast, profitability is determined using cumulative cash flow (CCF), net present value (NPV), and internal rate of return (IRR). The findings show that the production capacity of 10 kilotons per year (ktpy) of glucose and 4.96 ktpy of furfural with a purity of 98.21 and 99.54%-weight, respectively, was achieved in this study. The FCI is calculated as United States Dollar (USD) 20.80 million, while the working and operating expenses are calculated as USD 3.74 million and USD 16.93 million, respectively. This project achieves USD 7.65 million NPV with a positive IRR of 14.25% and a return on investment (ROI) of 22.06%. The present work successfully develops a profitable integrated process plant that is established with future upscaling parameters and key cost drivers. The findings provided in this work offer a platform and motivation for future research on integrated plants in the food, environment, and energy nexus with the co-location principle.

20.
iScience ; 26(1): 105839, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36660475

RESUMO

The oral microbiome has been implicated in a growing number of diseases; however, determinants of the oral microbiome and their roles remain elusive. Here, we investigated the oral (saliva and tongue dorsum) metagenome, the whole genome, and other omics data in a total of 4,478 individuals and demonstrated that the oral microbiome composition and its major contributing host factors significantly differed between sexes. We thus conducted a sex-stratified metagenome-genome-wide-association study (M-GWAS) and identified 11 differential genetic associations with the oral microbiome (p sex-difference  < 5 × 10-8). Furthermore, we performed sex-stratified Mendelian randomization (MR) analyses and identified abundant causalities between the oral microbiome and serum metabolites. Notably, sex-specific microbes-hormonal interactions explained the mostly observed sex hormones differences such as the significant causalities enrichments for aldosterone in females and androstenedione in males. These findings illustrate the necessity of sex stratification and deepen our understanding of the interplay between the oral microbiome and serum metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...