Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7632, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494366

RESUMO

Non-coding cis-regulatory variants in animal genomes are an important driving force in the evolution of transcription regulation and phenotype diversity. However, cistrome dynamics in plants remain largely underexplored. Here, we compare the binding of GOLDEN2-LIKE (GLK) transcription factors in tomato, tobacco, Arabidopsis, maize and rice. Although the function of GLKs is conserved, most of their binding sites are species-specific. Conserved binding sites are often found near photosynthetic genes dependent on GLK for expression, but sites near non-differentially expressed genes in the glk mutant are nevertheless under purifying selection. The binding sites' regulatory potential can be predicted by machine learning model using quantitative genome features and TF co-binding information. Our study show that genome cis-variation caused wide-spread TF binding divergence, and most of the TF binding sites are genetically redundant. This poses a major challenge for interpreting the effect of individual sites and highlights the importance of quantitatively measuring TF occupancy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fotossíntese/fisiologia , Sítios de Ligação/genética
2.
Genome Biol ; 23(1): 233, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36345039

RESUMO

BACKGROUND: Regulation of gene expression plays an essential role in controlling the phenotypes of plants. Brassica napus (B. napus) is an important source for the vegetable oil in the world, and the seed oil content is an important trait of B. napus. RESULTS: We perform a comprehensive analysis of the transcriptional variability in the seeds of B. napus at two developmental stages, 20 and 40 days after flowering (DAF). We detect 53,759 and 53,550 independent expression quantitative trait loci (eQTLs) for 79,605 and 76,713 expressed genes at 20 and 40 DAF, respectively. Among them, the local eQTLs are mapped to the adjacent genes more frequently. The adjacent gene pairs are regulated by local eQTLs with the same open chromatin state and show a stronger mode of expression piggybacking. Inter-subgenomic analysis indicates that there is a feedback regulation for the homoeologous gene pairs to maintain partial expression dosage. We also identify 141 eQTL hotspots and find that hotspot87-88 co-localizes with a QTL for the seed oil content. To further resolve the regulatory network of this eQTL hotspot, we construct the XGBoost model using 856 RNA-seq datasets and the Basenji model using 59 ATAC-seq datasets. Using these two models, we predict the mechanisms affecting the seed oil content regulated by hotspot87-88 and experimentally validate that the transcription factors, NAC13 and SCL31, positively regulate the seed oil content. CONCLUSIONS: We comprehensively characterize the gene regulatory features in the seeds of B. napus and reveal the gene networks regulating the seed oil content of B. napus.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Redes Reguladoras de Genes , Sementes/genética , Sementes/metabolismo , Locos de Características Quantitativas , Óleos de Plantas/metabolismo
3.
Nucleic Acids Res ; 49(W1): W523-W529, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34037796

RESUMO

Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have been reported in plants. Here, we present PlantDeepSEA as a deep learning-based web service to predict regulatory effects of genomic variants in multiple tissues of six plant species (including four crops). PlantDeepSEA provides two main functions. One is called Variant Effector, which aims to predict the effects of sequence variants on chromatin accessibility. Another is Sequence Profiler, a utility that performs 'in silico saturated mutagenesis' analysis to discover high-impact sites (e.g., cis-regulatory elements) within a sequence. When validated on independent test sets, the area under receiver operating characteristic curve of deep learning models in PlantDeepSEA ranges from 0.93 to 0.99. We demonstrate the usability of the web service with two examples. PlantDeepSEA could help to prioritize regulatory causal variants and might improve our understanding of their mechanisms of action in different tissues in plants. PlantDeepSEA is available at http://plantdeepsea.ncpgr.cn/.


Assuntos
Variação Genética , Genoma de Planta , Sequências Reguladoras de Ácido Nucleico , Software , Cromatina , Aprendizado Profundo , Genes de Plantas , Genômica , Internet , Oryza/genética , Plantas/genética , Polimorfismo Genético , Locos de Características Quantitativas , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...