Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(1)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477590

RESUMO

CK2 is a Ser/Thr protein kinase overexpressed in many cancers. It is usually present in cells as a tetrameric enzyme, composed of two catalytic (α or α') and two regulatory (ß) subunits, but it is active also in its monomeric form, and the specific role of the different isoforms is largely unknown. CK2 phosphorylates several substrates related to the uncontrolled proliferation, motility, and survival of cancer cells. As a consequence, tumor cells are addicted to CK2, relying on its activity more than healthy cells for their life, and exploiting it for developing multiple oncological hallmarks. However, little is known about CK2 contribution to the metabolic rewiring of cancer cells. With this study we aimed at shedding some light on it, especially focusing on the CK2 role in the glycolytic onco-phenotype. By analyzing neuroblastoma and osteosarcoma cell lines depleted of either one (α) or the other (α') CK2 catalytic subunit, we also aimed at disclosing possible pro-tumor functions which are specific of a CK2 isoform. Our results suggest that both CK2 α and α' contribute to cell proliferation, survival and tumorigenicity. The analyzed metabolic features disclosed a role of CK2 in tumor metabolism, and suggest prominent functions for CK2 α isoform. Results were also confirmed by CK2 pharmacological inhibition. Overall, our study provides new information on the mechanism of cancer cells addiction to CK2 and on its isoform-specific functions, with fundamental implications for improving future therapeutic strategies based on CK2 targeting.


Assuntos
Caseína Quinase II/metabolismo , Glicólise , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Caseína Quinase II/genética , Linhagem Celular Tumoral , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia
2.
Eur J Med Chem ; 195: 112267, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283296

RESUMO

Protein kinase CK2 sustains cancer growth, especially in hematological malignancies. Its inhibitor SRPIN803, based on a 6-methylene-5-imino-1,3,4-thiadiazolopyrimidin-7-one scaffold, showed notable specificity. Our synthesis of the initially proposed SRPIN803 resulted in its constitutional isomer SRPIN803-revised, where the 2-cyano-2-propenamide group does not cyclise and fuse to the thiadiazole ring. Its crystallographic structure in complex with CK2α identifies the structural determinants of the reported specificity. SRPIN803-revised explores the CK2 open hinge conformation, extremely rare among kinases, also interacting with side chains from this region. Its optimization lead to the more potent compound 4, which inhibits endocellular CK2, significantly affects viability of tumour cells and shows remarkable selectivity on a panel of 320 kinases.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Caseína Quinase II/metabolismo , Humanos , Células Jurkat , Simulação de Acoplamento Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Pirimidinonas/química , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Relação Estrutura-Atividade , Tiadiazóis/química , Tiadiazóis/metabolismo , Tiadiazóis/farmacologia
3.
FEBS J ; 287(9): 1850-1864, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31661600

RESUMO

Protein kinase CK2 is an antiapoptotic cancer-sustaining protein. Curcumin, reported previously as a CK2 inhibitor, is too bulky to be accommodated in the CK2 active site and rapidly degrades in solution generating various ATP-mimetic inhibitors; with a detailed comparative analysis, by means of both protein crystallography and enzymatic inhibition, ferulic acid was identified as the principal curcumin degradation product responsible for CK2 inhibition. The other curcumin derivatives vanillin, feruloylmethane and coniferyl aldehyde are weaker CK2 inhibitors. The high instability of curcumin in standard buffered solutions flags this compound, which is included in many commercial libraries, as a possible source of misleading interpretations, as was the case for CK2. Ferulic acid does not show any cytotoxicity and any inhibition of cellular CK2, due to its poor cellular permeability. However, curcumin acts as a prodrug in the cellular context, by generating its degradation products inside the treated cells, thus rescuing CK2 inhibition and consequently inducing cell death. Through the intracellular release of its degradation products, curcumin is expected to affect various target families; here, we identify the first bromodomain of BRD4 as a new target for those compounds. DATABASE: Structural data are available in the PDB database under the accession numbers 6HOP (CK2α/curcumin), 6HOQ (CK2α/ferulic acid), 6HOR (CK2α/feruloylmethane), 6HOT (CK2α/ferulic aldehyde), 6HOU (CK2α/vanillin) and 6HOV (BRD4/ferulic acid).


Assuntos
Antineoplásicos/farmacologia , Caseína Quinase II/antagonistas & inibidores , Curcumina/farmacologia , Pró-Fármacos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Curcumina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Pró-Fármacos/química , Inibidores de Proteínas Quinases/química
4.
FEBS J ; 286(24): 4995-5015, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31291696

RESUMO

The two human monoamine oxidase isoforms (namely MAO A and MAO B) are enzymes involved in the catabolism of monoamines, including neurotransmitters, and for this reason are well-known and attractive pharmacological targets in neuropsychiatric and neurodegenerative diseases, for which novel pharmacological approaches are necessary. Benextramine is a tetraamine disulfide mainly known as irreversible α-adrenergic antagonist, but able to hit additional targets involved in neurodegeneration. As the molecular structures of monoamine oxidases contain nine cysteine residues, the aim of this study was to evaluate benextramine and eleven structurally related polyamine disulfides as potential MAO inhibitors. Most of the compounds were found to induce irreversible inactivation of MAOs with inactivation potency depending on both the polyamine structure and the enzyme isoform. The more effective compounds generally showed preference for MAO B. Structure-activity relationships studies revealed the key role played by the disulfide core of these molecules in the inactivation mechanism. Docking experiments pointed to Cys323, in MAO A, and Cys172, in MAO B, as target of this type of inhibitors thus suggesting that their covalent binding inside the MAO active site sterically impedes the entrance of substrate towards the FAD cofactor. The effectiveness of benextramine in inactivating MAOs was demonstrated in SH-SY5Y neuroblastoma cell line. These results demonstrated for the first time that benextramine and its derivatives can inactivate human MAOs exploiting a mechanism different from that of the classical MAO inhibitors and could be a starting point for the development of pharmacological tools in neurodegenerative diseases.


Assuntos
Cistamina/análogos & derivados , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Cistamina/química , Cistamina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Estrutura Molecular , Monoaminoxidase/química , Relação Estrutura-Atividade
5.
Leukemia ; 32(5): 1124-1134, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29472719

RESUMO

The somatic translocation t(8;21)(q22;q22)/RUNX1-RUNX1T1 is one of the most frequent rearrangements found in children with standard-risk acute myeloid leukemia (AML). Despite the favorable prognostic role of this aberration, we recently observed a higher than expected frequency of relapse. Here, we employed an integrated high-throughput approach aimed at identifying new biological features predicting relapse among 34 t(8;21)-rearranged patients. We found that the DNA methylation status of patients who suffered from relapse was peculiarly different from that of children maintaining complete remission. The epigenetic signature, made up of 337 differentially methylated regions, was then integrated with gene and protein expression profiles, leading to a network, where cell-to-cell adhesion and cell-motility pathways were found to be aberrantly activated in relapsed patients. We identified most of these factors as RUNX1-RUNX1T1 targets, with Ras Homolog Family Member (RHOB) overexpression being the core of this network. We documented how RHOB re-organized the actin cytoskeleton through its downstream ROCK-LIMK-COFILIN axis: this increases blast adhesion by stress fiber formation, and reduces mitochondrial apoptotic cell death after chemotherapy treatment. Altogether, our data show an epigenetic heterogeneity within t(8;21)-rearranged AML patients at diagnosis able to influence the program of the chimeric transcript, promoting blast re-emergence and progression to relapse.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Epigenômica , Heterogeneidade Genética , Leucemia Mieloide Aguda/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética , Proteína rhoB de Ligação ao GTP/metabolismo , Adolescente , Crise Blástica/patologia , Adesão Celular/genética , Movimento Celular/genética , Criança , Pré-Escolar , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8 , Citoesqueleto/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Recidiva , Risco
6.
Haematologica ; 102(8): 1401-1412, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28619847

RESUMO

Lyn, a member of the Src family of kinases, is a key factor in the dysregulation of survival and apoptotic pathways of malignant B cells in chronic lymphocytic leukemia. One of the effects of Lyn's action is spatial and functional segregation of the tyrosine phosphatase SHP-1 into two pools, one beneath the plasma membrane in an active state promoting pro-survival signals, the other in the cytosol in an inhibited conformation and unable to counter the elevated level of cytosolic tyrosine phosphorylation. We herein show that SHP-1 activity can be elicited directly by nintedanib, an agent also known as a triple angiokinase inhibitor, circumventing the phospho-S591-dependent inhibition of the phosphatase, leading to the dephosphorylation of pro-apoptotic players such as procaspase-8 and serine/threonine phosphatase 2A, eventually triggering apoptosis. Furthermore, the activation of PP2A by using MP07-66, a novel FTY720 analog, stimulated SHP-1 activity via dephosphorylation of phospho-S591, which unveiled the existence of a positive feedback signaling loop involving the two phosphatases. In addition to providing further insights into the molecular basis of this disease, our findings indicate that the PP2A/SHP-1 axis may emerge as an attractive, novel target for the development of alternative strategies in the treatment of chronic lymphocytic leukemia.


Assuntos
Apoptose/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B/patologia , Proteína Fosfatase 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Retroalimentação Fisiológica , Humanos , Indóis/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Células Tumorais Cultivadas
7.
Blood ; 128(25): 2976-2987, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27742708

RESUMO

Chorea-acanthocytosis is one of the hereditary neurodegenerative disorders known as the neuroacanthocytoses. Chorea-acanthocytosis is characterized by circulating acanthocytes deficient in chorein, a protein of unknown function. We report here for the first time that chorea-acanthocytosis red cells are characterized by impaired autophagy, with cytoplasmic accumulation of active Lyn and of autophagy-related proteins Ulk1 and Atg7. In chorea-acanthocytosis erythrocytes, active Lyn is sequestered by HSP90-70 to form high-molecular-weight complexes that stabilize and protect Lyn from its proteasomal degradation, contributing to toxic Lyn accumulation. An interplay between accumulation of active Lyn and autophagy was found in chorea-acanthocytosis based on Lyn coimmunoprecipitation with Ulk1 and Atg7 and on the presence of Ulk1 in Lyn-containing high-molecular-weight complexes. In addition, chorein associated with Atg7 in healthy but not in chorea-acanthocytosis erythrocytes. Electron microscopy detected multivesicular bodies and membrane remnants only in circulating chorea-acanthocytosis red cells. In addition, reticulocyte-enriched chorea-acanthocytosis red cell fractions exhibited delayed clearance of mitochondria and lysosomes, further supporting the impairment of authophagic flux. Because autophagy is also important in erythropoiesis, we studied in vitro CD34+-derived erythroid precursors. In chorea-acanthocytosis, we found (1) dyserythropoiesis; (2) increased active Lyn; (3) accumulation of a marker of autophagic flux and autolysososme degradation; (4) accumlation of Lamp1, a lysosmal membrane protein, and LAMP1-positive aggregates; and (5) reduced clearance of lysosomes and mitochondria. Our results uncover in chorea-acanthocytosis erythroid cells an association between accumulation of active Lyn and impaired autophagy, suggesting a link between chorein and autophagic vesicle trafficking in erythroid maturation.


Assuntos
Autofagia , Células Eritroides/patologia , Neuroacantocitose/patologia , Adulto , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Autofagia/efeitos dos fármacos , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Benzoquinonas/farmacologia , Bortezomib/farmacologia , Diferenciação Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Demografia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/patologia , Eritrócitos/ultraestrutura , Células Eritroides/efeitos dos fármacos , Células Eritroides/ultraestrutura , Eritropoese/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lactamas Macrocíclicas/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peso Molecular , Corpos Multivesiculares/efeitos dos fármacos , Corpos Multivesiculares/metabolismo , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Quinases da Família src/metabolismo
8.
Blood ; 125(24): 3747-55, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25931585

RESUMO

Aberrant protein kinase activities, and the consequent dramatic increase of Ser/Thr and -Tyr phosphorylation, promote the deregulation of the survival pathways in chronic lymphocytic leukemia (CLL), which is crucial to the pathogenesis and progression of the disease. In this study, we show that the tumor suppressor protein phosphatase 2A (PP2A), one of the major Ser/Thr phosphatases, is in an inhibited form because of the synergistic contribution of 2 events, the interaction with its physiologic inhibitor SET and the phosphorylation of Y307 of the catalytic subunit of PP2A. The latter event is mediated by Lyn, a Src family kinase previously found to be overexpressed, delocalized, and constitutively active in CLL cells. This Lyn/PP2A axis accounts for the persistent high level of phosphorylation of the phosphatase's targets and represents a key connection linking phosphotyrosine- and phosphoserine/threonine-mediated oncogenic signals. The data herein presented show that the disruption of the SET/PP2A complex by a novel FTY720-analog (MP07-66) devoid of immunosuppressive effects leads to the reactivation of PP2A, which in turn triggers apoptosis of CLL cells. When used in combination with SFK inhibitors, the action of MP07-66 is synergistically amplified, providing a new option in the therapeutic strategy for CLL patients.


Assuntos
Chaperonas de Histonas/metabolismo , Imunossupressores/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Propilenoglicóis/farmacologia , Proteína Fosfatase 2/metabolismo , Esfingosina/análogos & derivados , Fatores de Transcrição/metabolismo , Quinases da Família src/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Ligação a DNA , Cloridrato de Fingolimode , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imunossupressores/química , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Propilenoglicóis/química , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esfingosina/química , Esfingosina/farmacologia , Células Tumorais Cultivadas
9.
Amino Acids ; 47(5): 869-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25792113

RESUMO

Mitochondria, once merely considered as the "powerhouse" of cells, as they generate more than 90 % of cellular ATP, are now known to play a central role in many metabolic processes, including oxidative stress and apoptosis. More than 40 known human diseases are the result of excessive production of reactive oxygen species (ROS), bioenergetic collapse and dysregulated apoptosis. Mitochondria are the main source of ROS in cells, due to the activity of the respiratory chain. In normal physiological conditions, ROS generation is limited by the anti-oxidant enzymatic systems in mitochondria. However, disregulation of the activity of these enzymes or interaction of respiratory complexes with mitochondriotropic agents may lead to a rise in ROS concentrations, resulting in oxidative stress, mitochondrial permeability transition (MPT) induction and triggering of the apoptotic pathway. ROS concentration is also increased by the activity of amine oxidases located inside and outside mitochondria, with oxidation of biogenic amines and polyamines. However, it should also be recalled that, depending on its concentration, the polyamine spermine can also protect against stress caused by ROS scavenging. In higher organisms, cell signaling pathways are the main regulators in energy production, since they act at the level of mitochondrial oxidative phosphorylation and participate in the induction of the MPT. Thus, respiratory complexes, ATP synthase and transition pore components are the targets of tyrosine kinases and phosphatases. Increased ROS may also regulate the tyrosine phosphorylation of target proteins by activating Src kinases or phosphatases, preventing or inducing a number of pathological states.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Poliaminas/metabolismo , Transdução de Sinais , Tirosina/metabolismo , Apoptose , Transporte de Elétrons/genética , Regulação da Expressão Gênica , Humanos , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/patologia , Poro de Transição de Permeabilidade Mitocondrial , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Estresse Oxidativo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
10.
Br J Haematol ; 165(5): 659-72, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24606526

RESUMO

Functional abnormalities of chronic lymphocytic leukaemia (CLL) cells may be related to the microtubular network of cell cytoskeleton; specifically tubulin involvement in cells after B-cell receptor engagement. As microtubule inhibitors could represent a therapeutic strategy for CLL, this study investigated the capability of nocodazole, a synthetic depolymerizing agent, to kill CLL leukaemic cells. We demonstrated that nocodazole was highly specific for the in vitro induction of apoptosis in leukaemic cells from 90 CLL patients, without affecting the viability of T-cells and/or mesenchymal stromal cells (MSCs) recovered from the same patients. Nocodazole was observed to overcome the pro-survival signals provided by MSCs. Competing with ATP for the nucleotide-binding site, nocodazole has been observed to turn off the high basal tyrosine phosphorylation of leukaemic cells mediated by the Src-kinase Lyn. Considering that most anti-microtubule drugs have limited clinical use because of their strong toxic effects, the high selectivity of nocodazole for leukaemic cells in CLL and its capability to bypass microenvironmental pro-survival stimuli, suggests the use of this inhibitor for designing new therapeutic strategies in CLL treatment.


Assuntos
Antineoplásicos/farmacologia , Leucemia Linfocítica Crônica de Células B/patologia , Microtúbulos/efeitos dos fármacos , Nocodazol/farmacologia , Moduladores de Tubulina/farmacologia , Quinases da Família src/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/fisiologia , Comunicação Celular/fisiologia , Técnicas de Cocultura , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Microscopia Confocal , Pessoa de Meia-Idade , Nocodazol/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/fisiologia , Moduladores de Tubulina/metabolismo , Células Tumorais Cultivadas
11.
Haematologica ; 99(6): 1069-77, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24532043

RESUMO

Cortactin, an actin binding protein and Lyn substrate, is up-regulated in several cancers and its level is associated with increased cell migration, metastasis and poor prognosis. The identification that the Src kinase Lyn and its substrate HS1 are over-expressed in B-cell chronic lymphocytic leukemia and involved in resistance to chemotherapy and poor prognosis, prompted us to investigate the role of cortactin, an HS1 homolog, in the pathogenesis and progression of this disorder. In this study, we observed that cortactin is over-expressed in leukemic cells of patients (1.10 ± 0.12) with respect to normal B lymphocytes (0.19 ± 0.06; P=0.0065). Fifty-three percent of our patients expressed the WT mRNA and p80/85 protein isoforms, usually lacking in normal B lymphocytes which express the SV1 variant and the p70/75 protein isoforms. Moreover, we found an association of the cortactin overexpression and negative prognostic factors, including ZAP-70 (P<0.01), CD38 (P<0.01) and somatic hypermutations in the immunoglobulin heavy-chain variable region (P<0.01). Our results show that patients with B-cell chronic lymphocytic leukemia express high levels of cortactin with a particular overexpression of the WT isoform that is lacking in normal B cells, and a correlation to poor prognosis, suggesting that this protein could be relevant in the pathogenesis and aggressiveness of the disease.


Assuntos
Processamento Alternativo , Cortactina/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos B/metabolismo , Linfócitos B/patologia , Estudos de Casos e Controles , Cortactina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional
12.
Blood ; 123(6): 875-83, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24352878

RESUMO

Lyn, a member of the group of tyrosine kinases named the Src family kinases (SFKs), is overexpressed, associated with an aberrant multiprotein complex and constitutively active in B-cell chronic lymphocytic leukemia (B-CLL) cells, resulting in a high level of tyrosine phosphorylation and contributing to their resistance to apoptosis. By using biochemical and bioinformatics tools, we identified procaspase-8 (procasp8), the caspase-8 zymogen, as a cytosolic target for Lyn in B-CLL cells, the phosphorylation of which at Tyr380 promotes the formation of an inactive procasp8 homodimer. This complex remains segregated in the cytosol and appears to be crucial in mediating the antiapoptotic function of Lyn in this disease. The significance of the Lyn-procasp8 axis in impairing apoptosis in B-CLL cells was further confirmed by pharmacological and genetic inhibition of procasp8, which drastically reduced the apoptosis induced by the SFK inhibitors PP2 and dasatinib. Our data highlight that Lyn's dysregulated expression, activity, and localization in B-CLLs support resistance to cell demise by inhibiting an early player of apoptotic signaling, and potentially broaden the perspectives of developing new strategies for the treatment of this disease.


Assuntos
Apoptose , Caspase 8/química , Leucemia Linfocítica Crônica de Células B/patologia , Quinases da Família src/metabolismo , Western Blotting , Caspase 8/metabolismo , Proliferação de Células , Biologia Computacional , Citosol/metabolismo , Eletroforese em Gel Bidimensional , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Fosforilação , Multimerização Proteica , Proteoma/análise , Células Tumorais Cultivadas , Tirosina/metabolismo
13.
Biochim Biophys Acta ; 1843(2): 288-98, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24140598

RESUMO

The dimerization and auto-transphosphorylation of platelet-derived growth factor receptor (PDGFR) upon engagement by platelet-derived growth factor (PDGF) activates signals promoting the mitogenic response of hepatic stellate cells (HSCs) due to liver injury, thus contributing to the development of hepatic fibrosis. We demonstrate that the tyrosine phosphatases Src homology 2 domain-containing phosphatase 1 and 2 (SHP-1 and SHP-2) act as crucial regulators of a complex signaling network orchestrated by PDGFR activation in a spatio-temporal manner with diverse and opposing functions in HSCs. In fact, silencing of either phosphatase shows that SHP-2 is committed to PDGFR-mediated cell proliferation, whereas SHP-1 dephosphorylates PDGFR hence abrogating the downstream signaling pathways that result in HSC activation. In this regard, SHP-1 as an off-switch of PDGFR signaling appears to emerge as a valuable molecular target to trigger as to prevent HSC proliferation and the fibrogenic effects of HSC activation. We show that boswellic acid, a multitarget compound with potent anti-inflammatory action, exerts an anti-proliferative effect on HSCs, as in other cell models, by upregulating SHP-1 with subsequent dephosphorylation of PDGFR-ß and downregulation of PDGF-dependent signaling after PDGF stimulation. Moreover, the synergism resulting from the combined use of boswellic acid and imatinib, which directly inhibits PDGFR-ß activity, on activated HSCs offers new perspectives for the development of therapeutic strategies that could implement molecules affecting diverse players of this molecular circuit, thus paving the way to multi-drug low-dose regimens for liver fibrosis.


Assuntos
Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Animais , Becaplermina , Benzamidas/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Mesilato de Imatinib , Masculino , Piperazinas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-sis/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia
14.
Amino Acids ; 42(2-3): 741-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21809072

RESUMO

The polyamine spermine is transported into the matrix of various types of mitochondria by a specific uniporter system identified as a protein channel. This mechanism is regulated by the membrane potential; other regulatory effectors are unknown. This study analyzes the transport of spermine in the presence of peroxides in both isolated rat liver and brain mitochondria, in order to evaluate the involvement of the redox state in this mechanism, and to compare its effect in both types of mitochondria. In liver mitochondria peroxides are able to inhibit spermine transport. This effect is indicative of redox regulation by the transporter, probably due to the presence of critical thiol groups along the transport pathway, or in close association with it, with different accessibility for the peroxides and performing different functions. In brain mitochondria, peroxides have several effects, supporting the hypothesis of a different regulation of spermine transport. The fact that peroxovanadate can inhibit tyrosine phosphatases in brain mitochondria suggests that mitochondrial spermine transport is regulated by tyrosine phosphorylation in this organ. In this regard, the evaluation of spermine transport in the presence of Src inhibitors suggests the involvement of Src family kinases in this process. It is possible that phosphorylation sites for Src kinases are present in the channel pathway and have an inhibitory effect on spermine transport under regulation by Src kinases. The results of this study suggest that the activity of the spermine transporter probably depends on the redox and/or tyrosine phosphorylation state of mitochondria, and that its regulation may be different in distinct organs.


Assuntos
Encéfalo/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Peróxidos/farmacologia , Espermina/farmacologia , Animais , Transporte Biológico , Fosforilação , Ratos , Ratos Wistar , Tirosina/metabolismo
15.
Biochem J ; 439(3): 505-16, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21732913

RESUMO

The association of the SH3 (Src homology 3) domain of SFKs (Src family kinases) with protein partners bearing proline-rich motifs has been implicated in the regulation of SFK activity, and has been described as a possible mechanism of relocalization of SFKs to subcellular compartments. We demonstrate in the present study for the first time that p13, an accessory protein encoded by the HTLV-1 (human T-cell leukaemia virus type 1), binds the SH3 domain of SFKs via its C-terminal proline-rich motif, forming a stable heterodimer that translocates to mitochondria by virtue of its N-terminal mitochondrial localization signal. As a result, the activity of SFKs is dramatically enhanced, with a subsequent increase in mitochondrial tyrosine phosphorylation, and the recognized ability of p13 to insert itself into the inner mitochondrial membrane and to perturb the mitochondrial membrane potential is abolished. Overall, the present study, in addition to confirming that the catalytic activity of SFKs is modulated by interactors of their SH3 domain, leads us to hypothesize a general mechanism by which proteins bearing a proline-rich motif and a mitochondrial localization signal at the same time may act as carriers of SFKs into mitochondria, thus contributing to the regulation of mitochondrial functions under various pathophysiological conditions.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano/química , Proteínas Mitocondriais/química , Domínios Proteicos Ricos em Prolina , Proteínas dos Retroviridae/química , Domínios de Homologia de src , Quinases da Família src/química , Motivos de Aminoácidos , Animais , Células HeLa , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Proteínas Mitocondriais/genética , Ligação Proteica , Multimerização Proteica/genética , Transporte Proteico/genética , Coelhos , Ratos , Proteínas dos Retroviridae/genética , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...