Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687801

RESUMO

In this paper, we present a comprehensive assessment of individuals' mental engagement states during manual and autonomous driving scenarios using a driving simulator. Our study employed two sensor fusion approaches, combining the data and features of multimodal signals. Participants in our experiment were equipped with Electroencephalogram (EEG), Skin Potential Response (SPR), and Electrocardiogram (ECG) sensors, allowing us to collect their corresponding physiological signals. To facilitate the real-time recording and synchronization of these signals, we developed a custom-designed Graphical User Interface (GUI). The recorded signals were pre-processed to eliminate noise and artifacts. Subsequently, the cleaned data were segmented into 3 s windows and labeled according to the drivers' high or low mental engagement states during manual and autonomous driving. To implement sensor fusion approaches, we utilized two different architectures based on deep Convolutional Neural Networks (ConvNets), specifically utilizing the Braindecode Deep4 ConvNet model. The first architecture consisted of four convolutional layers followed by a dense layer. This model processed the synchronized experimental data as a 2D array input. We also proposed a novel second architecture comprising three branches of the same ConvNet model, each with four convolutional layers, followed by a concatenation layer for integrating the ConvNet branches, and finally, two dense layers. This model received the experimental data from each sensor as a separate 2D array input for each ConvNet branch. Both architectures were evaluated using a Leave-One-Subject-Out (LOSO) cross-validation approach. For both cases, we compared the results obtained when using only EEG signals with the results obtained by adding SPR and ECG signals. In particular, the second fusion approach, using all sensor signals, achieved the highest accuracy score, reaching 82.0%. This outcome demonstrates that our proposed architecture, particularly when integrating EEG, SPR, and ECG signals at the feature level, can effectively discern the mental engagement of drivers.


Assuntos
Artefatos , Cultura , Humanos , Eletrocardiografia , Eletroencefalografia , Redes Neurais de Computação
2.
Sensors (Basel) ; 23(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36850637

RESUMO

In this paper, we consider the evaluation of the mental attention state of individuals driving in a simulated environment. We tested a pool of subjects while driving on a highway and trying to overcome various obstacles placed along the course in both manual and autonomous driving scenarios. Most systems described in the literature use cameras to evaluate features such as blink rate and gaze direction. In this study, we instead analyse the subjects' Electrodermal activity (EDA) Skin Potential Response (SPR), their Electrocardiogram (ECG), and their Electroencephalogram (EEG). From these signals we extract a number of physiological measures, including eye blink rate and beta frequency band power from EEG, heart rate from ECG, and SPR features, then investigate their capability to assess the mental state and engagement level of the test subjects. In particular, and as confirmed by statistical tests, the signals reveal that in the manual scenario the subjects experienced a more challenged mental state and paid higher attention to driving tasks compared to the autonomous scenario. A different experiment in which subjects drove in three different setups, i.e., a manual driving scenario and two autonomous driving scenarios characterized by different vehicle settings, confirmed that manual driving is more mentally demanding than autonomous driving. Therefore, we can conclude that the proposed approach is an appropriate way to monitor driver attention.


Assuntos
Condução de Veículo , Eletrocardiografia , Humanos , Eletroencefalografia , Resposta Galvânica da Pele , Frequência Cardíaca
3.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161685

RESUMO

In this paper, we propose a relatively noninvasive system that can automatically assess the impact of traffic conditions on drivers. We analyze the physiological signals recorded from a set of individuals while driving in a simulated urban scenario in two different traffic scenarios, i.e., with traffic and without traffic. The experiments were carried out in a laboratory located at the University of Udine, employing a driving simulator equipped with a moving platform. We acquired two Skin Potential Response (SPR) signals from the hands of the drivers, and an electrocardiogram (ECG) signal from their chest. In the proposed scheme, the SPR signals are then processed through a Motion Artifact (MA) removal algorithm such that possible motion artifacts arising during the drive are reduced. An analysis considering the scalogram of the single cleaned SPR signal is presented. This signal, along with the ECG, is then fed to various Machine Learning (ML) algorithms. More specifically, some statistical features are extracted from each signal segment which, after being analyzed through a binary ML model, are labeled as corresponding to a stressful situation or not. Our results confirm the applicability of the proposed approach to identify stress in the two scenarios. This is also in accordance with our findings considering the SPR signal scalograms.


Assuntos
Condução de Veículo , Algoritmos , Artefatos , Eletrocardiografia , Humanos , Aprendizado de Máquina
4.
Sensors (Basel) ; 20(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354062

RESUMO

The evaluation of car drivers' stress condition is gaining interest as research on Autonomous Driving Systems (ADS) progresses. The analysis of the stress response can be used to assess the acceptability of ADS and to compare the driving styles of different autonomous drive algorithms. In this contribution, we present a system based on the analysis of the Electrodermal Activity Skin Potential Response (SPR) signal, aimed to reveal the driver's stress induced by different driving situations. We reduce motion artifacts by processing two SPR signals, recorded from the hands of the subjects, and outputting a single clean SPR signal. Statistical features of signal blocks are sent to a Supervised Learning Algorithm, which classifies between stress and normal driving (non-stress) conditions. We present the results obtained from an experiment using a professional driving simulator, where a group of people is asked to undergo manual and autonomous driving on a highway, facing some unexpected events meant to generate stress. The results of our experiment show that the subjects generally appear more stressed during manual driving, indicating that the autonomous drive can possibly be well received by the public. During autonomous driving, however, significant peaks of the SPR signal are evident during unexpected events. By examining the electrocardiogram signal, the average heart rate is generally higher in the manual case compared to the autonomous case. This further supports our previous findings, even if it may be due, in part, to the physical activity involved in manual driving.


Assuntos
Condução de Veículo , Eletrocardiografia/métodos , Tempo de Reação/fisiologia , Algoritmos , Feminino , Humanos , Masculino , Pele/metabolismo , Estresse Fisiológico/fisiologia
5.
IEEE Trans Biomed Eng ; 67(12): 3413-3424, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32305889

RESUMO

OBJECTIVE: in this paper we propose a system to detect a subject's sympathetic reaction, which is related to unexpected or challenging events during a car drive. METHODS: we use the Electrocardiogram (ECG) signal and the Skin Potential Response (SPR) signal, which has several advantages with respect to other Electrodermal (EDA) signals. We record one SPR signal for each hand, and use an algorithm that, selecting the smoother signal, is able to remove motion artifacts. We extract statistical features from the ECG and SPR signals in order to classify signal segments and identify the presence or absence of emotional events via a Supervised Learning Algorithm. The experiments were carried out in a company which specializes in driving simulator equipment, using a motorized platform and a driving simulator. Different subjects were tested with this setup, with different challenging events happening on predetermined locations on the track. RESULTS: we obtain an Accuracy as high as 79.10% for signal blocks and as high as 91.27% for events. CONCLUSION: results demonstrate the good performance of the presented system in detecting sympathetic reactions, and the effectiveness of the motion artifact removal procedure. SIGNIFICANCE: our work demonstrates the possibility to classify the emotional state of the driver, using the ECG and EDA signals and a slightly invasive setup. In particular, the proposed use of SPR and of the motion artifact removal procedure are crucial for the effectiveness of the system.


Assuntos
Condução de Veículo , Automóveis , Algoritmos , Eletrocardiografia , Resposta Galvânica da Pele , Humanos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...