Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Life Sci ; 291: 120239, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942163

RESUMO

Aim Investigate whether inheritance of improved skeletal muscle mitochondrial function and its association with glycemic control are multigenerational benefits of exercise. MAIN METHODS: Male Swiss mice were subjected to 8 weeks of endurance training and mated with untrained females. KEY FINDINGS: Trained fathers displayed typical endurance training-induced adaptations. Remarkably, offspring from trained fathers also exhibited higher endurance performance, mitochondrial oxygen consumption, glucose tolerance and insulin sensitivity. However, PGC-1α expression was not increased in the offspring. In the offspring, the expression of the co-repressor NCoR1 was reduced, increasing activation of PGC-1α target genes. These effects correlated with higher DNA methylation at the NCoR1 promoter in both, the sperm of trained fathers and in the skeletal muscle of their offspring. SIGNIFICANCE: Higher skeletal muscle mitochondrial function is inherited by epigenetic de-activation of a key PGC-1α co-repressor.


Assuntos
Mitocôndrias/metabolismo , Condicionamento Físico Animal/fisiologia , Esforço Físico/fisiologia , Animais , Metilação de DNA , Epigênese Genética/genética , Feminino , Masculino , Camundongos , Mitocôndrias/fisiologia , Músculo Esquelético/fisiologia , Correpressor 1 de Receptor Nuclear/metabolismo , Consumo de Oxigênio/fisiologia , Herança Paterna/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/fisiologia , Condicionamento Físico Animal/métodos , RNA Mensageiro/genética
2.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008427

RESUMO

BACKGROUND/AIMS: Epigenetic regulation is considered the main molecular mechanism underlying the developmental origin of health and disease's (DOHAD) hypothesis. Previous studies that have investigated the role of paternal exercise on the metabolic health of the offspring did not control for the amount and intensity of the training or possible effects of adaptation to exercise and produced conflicting results regarding the benefits of parental exercise to the next generation. We employed a precisely regulated exercise regimen to study the transgenerational inheritance of improved metabolic health. METHODS: We subjected male mice to a well-controlled exercise -training program to investigate the effects of paternal exercise on glucose tolerance and insulin sensitivity in their adult progeny. To investigate the molecular mechanisms of epigenetic inheritance, we determined chromatin markers in the skeletal muscle of the offspring and the paternal sperm. RESULTS: Offspring of trained male mice exhibited improved glucose homeostasis and insulin sensitivity. Paternal exercise modulated the DNA methylation profile of PI3Kca and the imprinted H19/Igf2 locus at specific differentially methylated regions (DMRs) in the skeletal muscle of the offspring, which affected their gene expression. Remarkably, a similar DNA methylation profile at the PI3Kca, H19, and Igf2 genes was present in the progenitor sperm indicating that exercise-induced epigenetic changes that occurred during germ cell development contributed to transgenerational transmission. CONCLUSION: Paternal exercise might be considered as a strategy that could promote metabolic health in the offspring as the benefits can be inherited transgenerationally.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Metilação de DNA , Resistência à Insulina/genética , Fator de Crescimento Insulin-Like II/genética , Condicionamento Físico Animal/métodos , RNA Longo não Codificante/genética , Espermatozoides/química , Animais , Epigênese Genética , Feminino , Teste de Tolerância a Glucose , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Modelos Animais , Consumo de Oxigênio , Herança Paterna , Análise de Sequência de DNA , Espermatozoides/metabolismo
3.
J Cell Physiol ; 233(1): 486-496, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28370189

RESUMO

In the present study, we investigated the relationship between early life protein malnutrition-induced redox imbalance, and reduced glucose-stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal-protein-diet (17%-protein, NP) or to a low-protein-diet (6%-protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H2 O2 ), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn-superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre-incubated with H2 O2 and/or N-acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H2 O2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre-incubated with H2 O2 (100 µM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N-acetylcysteine.


Assuntos
Glicemia/metabolismo , Dieta com Restrição de Proteínas , Insulina/sangue , Ilhotas Pancreáticas/metabolismo , Estresse Oxidativo , Desnutrição Proteico-Calórica/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antioxidantes/farmacologia , Catalase/genética , Catalase/metabolismo , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Estado Nutricional , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Desnutrição Proteico-Calórica/sangue , Desnutrição Proteico-Calórica/genética , Desnutrição Proteico-Calórica/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fatores de Tempo
4.
FASEB J ; 32(3): 1524-1536, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29133342

RESUMO

Prolonged exercise has positive metabolic effects in obese or diabetic individuals. These effects are usually ascribed to improvements in insulin sensitivity. We evaluated whether exercise also generates circulating signals that protect human and rodent ß cells against endoplasmic reticulum (ER) stress and apoptosis. For this purpose, we obtained serum from humans or mice before and after an 8 wk training period. Exposure of human islets or mouse or rat ß cells to human or rodent sera, respectively, obtained from trained individuals reduced cytokine (IL-1ß+IFN-γ)- or chemical ER stressor-induced ß-cell ER stress and apoptosis, at least in part via activation of the transcription factor STAT3. These findings indicate that exercise training improves human and rodent ß-cell survival under diabetogenic conditions and support lifestyle interventions as a protective approach for both type 1 and 2 diabetes.-Paula, F. M. M., Leite, N. C., Borck, P. C., Freitas-Dias, R., Cnop, M., Chacon-Mikahil, M. P. T., Cavaglieri, C. R., Marchetti, P., Boschero, A. C., Zoppi, C. C., Eizirik, D. L. Exercise training protects human and rodent ß cells against endoplasmic reticulum stress and apoptosis.


Assuntos
Apoptose/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Exercício Físico/fisiologia , Células Secretoras de Insulina/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Feminino , Humanos , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Ratos , Ratos Wistar
6.
FASEB J ; 29(5): 1805-16, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25609426

RESUMO

Type 1 diabetes (T1D) is provoked by an autoimmune assault against pancreatic ß cells. Exercise training enhances ß-cell mass in T1D. Here, we investigated how exercise signals ß cells in T1D condition. For this, we used several approaches. Wild-type and IL-6 knockout (KO) C57BL/6 mice were exercised. Afterward, islets from control and trained mice were exposed to inflammatory cytokines (IL-1ß plus IFN-γ). Islets from control mice and ß-cell lines (INS-1E and MIN6) were incubated with serum from control or trained mice or medium obtained from 5-aminoimidazole-4 carboxamide1-ß-d-ribofuranoside (AICAR)-treated C2C12 skeletal muscle cells. Subsequently, islets and ß cells were exposed to IL-1ß plus IFN-γ. Proteins were assessed by immunoblotting, apoptosis was determined by DNA-binding dye propidium iodide fluorescence, and NO(•) was estimated by nitrite. Exercise reduced 25, 75, and 50% of the IL-1ß plus IFN-γ-induced iNOS, nitrite, and cleaved caspase-3 content, respectively, in pancreatic islets. Serum from trained mice and medium from AICAR-treated C2C12 cells reduced ß-cell death, induced by IL-1ß plus IFN-γ treatment, in 15 and 38%, respectively. This effect was lost in samples treated with IL-6 inhibitor or with serum from exercised IL-6 KO mice. In conclusion, muscle contraction signals ß-cell survival in T1D through IL-6.


Assuntos
Apoptose , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/patologia , Interleucina-6/fisiologia , Ilhotas Pancreáticas/patologia , Músculo Esquelético/patologia , Condicionamento Físico Animal , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , RNA Mensageiro/genética , Radioimunoensaio , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
7.
Amino Acids ; 47(4): 745-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25575490

RESUMO

Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week swimming protocol. Half of the C and T mice, designated as the CL and TL groups, were supplemented with leucine (1.5 % dissolved in the drinking water) throughout the experiment. As well known, endurance exercise training reduced body weight and the retroperitoneal fat pad, increased soleus mass, increased VO2max, decreased muscle proteolysis, and ameliorated peripheral insulin sensitivity. Leucine supplementation had no effect on any of these parameters and worsened glucose tolerance in both CL and TL mice. In the soleus muscle of the T group, AS-160(Thr-642) (AKT substrate of 160 kDa) and AMPK(Thr-172) (AMP-Activated Protein Kinase) phosphorylation was increased by exercise in both basal and insulin-stimulated conditions, but it was reduced in TL mice with insulin stimulation compared with the T group. Akt phosphorylation was not affected by exercise but was lower in the CL group compared with the other groups. Leucine supplementation increased mTOR phosphorylation at basal conditions, whereas exercise reduced it in the presence of insulin, despite no alterations in protein synthesis. In trained groups, the total FoxO3a protein content and the mRNA for the specific isoforms E2 and E3 ligases were reduced. In conclusion, leucine supplementation did not potentiate the effects of endurance training on protein turnover, and it also reduced its positive effects on glucose homeostasis.


Assuntos
Suplementos Nutricionais/análise , Glucose/metabolismo , Leucina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Feminino , Homeostase , Humanos , Insulina/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Resistência Física , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Natação , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
Liver Int ; 34(5): 771-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23998525

RESUMO

BACKGROUND & AIMS: Obese protein malnourished mice display liver insulin resistance and taurine (TAU) seems to attenuate this effect. The association between early-life malnutrition and hepatic redox balance in diet-induced insulin resistance is unknown. We investigated TAU supplementation effects upon liver redox state and insulin signalling in obese protein malnourished mice. METHODS: Weaned male C57BL-6 mice were fed a control (14% protein - C) or a protein-restricted diet (6% protein - R) for 6 weeks. Afterwards, mice received a high-fat diet (34% fat - HFD) for 8 weeks (CH - RH). Half of the HFD-mice were supplemented with TAU (5%) throughout the treatment (CHT - RHT). Body and tissues' weight, respiratory quotient (RQ), glucose tolerance and insulin sensitivity, hepatic oxidant and antioxidant markers and insulin cascade proteins were assessed. RESULTS: Protein restriction leads to typical features whereas HFD was able to induce a catch-up growth in RH. HFD-groups showed higher energy intake and adiposity, lower energy expenditure and altered RQ. Glucose tolerance and insulin sensitivity were impaired in HFD-groups and TAU attenuated these effects. H2 O2 content was increased in CHT and RHT despite no differences in antioxidant enzymes and GSH concentration. AKT and PTEN phosphorylation were significantly increased in CHT but not in RHT. CONCLUSION: Our data provide evidence for an association between TAU-induced improved glycaemic control because of PTEN inactivation and higher AKT phosphorylation. These effects seem to be related with altered hepatic redox balance in obese mice, and this effect is impaired by protein malnutrition.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Fígado/metabolismo , Obesidade/metabolismo , Taurina/uso terapêutico , Animais , Composição Corporal , Suplementos Nutricionais , Glucose/metabolismo , Crescimento , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/dietoterapia , Obesidade/etiologia , Oxirredução , Fosfoproteínas Fosfatases/metabolismo , Deficiência de Proteína/complicações
9.
Biochim Biophys Acta ; 1832(10): 1591-604, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23643711

RESUMO

The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500µM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with ß-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and ß-oxidation of fatty acids.


Assuntos
Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Resistência à Insulina , Mitocôndrias Musculares/fisiologia , Animais , Antioxidantes/metabolismo , Células Cultivadas , Masculino , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Ácido Palmítico/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
10.
J Appl Physiol (1985) ; 112(5): 711-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22174407

RESUMO

Endurance training has been shown to increase pancreatic ß-cell function and mass. However, whether exercise modulates ß-cell growth and survival pathways signaling is not completely understood. This study investigated the effects of exercise on growth and apoptotic markers levels in rat pancreatic islets. Male Wistar rats were randomly assigned to 8-wk endurance training or to a sedentary control group. After that, pancreatic islets were isolated; gene expression and the total content and phosphorylation of several proteins related to growth and apoptotic pathways as well as the main antioxidant enzymes were determined by real-time polymerase chain reaction and Western blot analysis, respectively. Reactive oxygen species (ROS) production was measured by fluorescence. Endurance training increased the time to reach fatigue by 50%. Endurance training resulted in increased protein phosphorylation content of AKT (75%), AKT substrate (AS160; 100%), mTOR (60%), p70s6k (90%), and ERK1/2 (50%), compared with islets from control group. Catalase protein content was 50% higher, whereas ROS production was 49 and 77% lower in islets from trained rats under basal and stimulating glucose conditions, respectively. Bcl-2 mRNA and protein levels increased by 46 and 100%, respectively. Bax and cleaved caspase-3 protein contents were reduced by 25 and 50% in islets from trained rats, respectively. In conclusion, these results demonstrate that endurance training favors the ß-cell growth and survival by activating AKT and ERK1/2 pathways, enhancing antioxidant capacity, and reducing ROS production and apoptotic proteins content.


Assuntos
Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/fisiologia , Resistência Física/fisiologia , Transdução de Sinais/fisiologia , Animais , Antioxidantes/metabolismo , Apoptose/fisiologia , Peso Corporal , Fadiga/genética , Fadiga/metabolismo , Fadiga/fisiopatologia , Expressão Gênica , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Oxirredução , Fosforilação , Condicionamento Físico Animal , Resistência Física/genética , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
11.
Arq Bras Endocrinol Metabol ; 55(5): 303-13, 2011 Jun.
Artigo em Português | MEDLINE | ID: mdl-21881812

RESUMO

The glucose-fatty acid cycle explains the preference for fatty acid during moderate and long duration physical exercise. In contrast, there is a high glucose availability and oxidation rate in response to intense physical exercise. The reactive oxygen species (ROS) production during physical exercise suggests that the redox balance is important to regulate of lipids/carbohydrate metabolism. ROS reduces the activity of the Krebs cycle, and increases the activity of mitochondrial uncoupling proteins. The opposite effects happen during moderate physical activity. Thus, some issues is highlighted in the present review: Why does skeletal muscle prefer lipids in the basal and during moderate physical activity? Why does glucose-fatty acid fail to carry out their effects during intense physical exercise? How skeletal muscles regulate the lipids and carbohydrate metabolism during the contraction-relaxation cycle?


Assuntos
Exercício Físico/fisiologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Animais , Carboidratos da Dieta/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo
13.
Arq. bras. endocrinol. metab ; 55(5): 303-313, June 2011. ilus
Artigo em Português | LILACS | ID: lil-604159

RESUMO

O ciclo glicose-ácido graxo explica a preferência do tecido muscular pelos ácidos graxos durante atividade moderada de longa duração. Em contraste, durante o exercício de alta intensidade, há aumento na disponibilidade e na taxa de oxidação de glicose. A produção de espécies reativas de oxigênio (EROs) durante a atividade muscular sugere que o balanço redox intracelular é importante na regulação do metabolismo de lipídios/carboidratos. As EROs diminuem a atividade do ciclo de Krebs e aumentam a atividade da proteína desacopladora mitocondrial. O efeito oposto é esperado durante a atividade moderada. Assim, as questões levantadas nesta revisão são: Por que o músculo esquelético utiliza preferencialmente os lipídios no estado basal e de atividade moderada? Por que o ciclo glicose-ácido graxo falha em exercer seus efeitos durante o exercício intenso? Como o músculo esquelético regula o metabolismo de lipídios e carboidratos em regime envolvendo o ciclo contração-relaxamento.


The glucose-fatty acid cycle explains the preference for fatty acid during moderate and long duration physical exercise. In contrast, there is a high glucose availability and oxidation rate in response to intense physical exercise. The reactive oxygen species (ROS) production during physical exercise suggests that the redox balance is important to regulate of lipids/carbohydrate metabolism. ROS reduces the activity of the Krebs cycle, and increases the activity of mitochondrial uncoupling proteins. The opposite effects happen during moderate physical activity. Thus, some issues is highlighted in the present review: Why does skeletal muscle prefer lipids in the basal and during moderate physical activity? Why does glucose-fatty acid fail to carry out their effects during intense physical exercise? How skeletal muscles regulate the lipids and carbohydrate metabolism during the contraction-relaxation cycle?.


Assuntos
Animais , Humanos , Exercício Físico/fisiologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Carboidratos da Dieta/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Eur J Appl Physiol ; 111(9): 2369-74, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21287194

RESUMO

Endurance exercise has been shown to reduce pancreatic islets glucose-stimulated insulin secretion (GSIS). Anaplerotic/cataplerotic pathways are directly related to GSIS signaling. However, the effect of endurance training upon pancreatic islets anaplerotic enzymes is still unknown. In this sense, we tested the hypothesis that endurance exercise decreases GSIS by reducing anaplerotic/cataplerotic enzymes content. Male Wistar rats were randomly assigned to one of the four experimental groups as follows: control sedentary group (CTL), trained 1 day per week (TRE1×), trained 3 days per week (TRE3×) and trained 5 days per week (TRE5x) and submitted to an 8 weeks endurance-training protocol. After the training protocol, pancreatic islets were isolated and incubated with basal (2.8 mM) and stimulating (16.7 mM) glucose concentrations for GSIS measurement by radioimmunoassay. In addition, pyruvate carboxylase (PYC), pyruvate dehydrogenase (PDH), pyruvate dehydrogenase kinase 4 (PDK4), ATP-citrate lyase (ACL) and glutamate dehydrogenase (GDH) content were quantified by western blotting. Our data showed that 8 weeks of chronic endurance exercise reduced GSIS by 50% in a dose-response manner according to weekly exercise frequency. PYC showed significant twofold increase in TRE3×. PYC enhancement was even higher in TRE5× (p < 0.0001). PDH and PDK4 reached significant 25 and 50% enhancement, respectively compared with CTL. ACL and GDH also reported significant 50 and 75% increase, respectively. The absence of exercise-induced correlations among GSIS and anaplerotic/cataplerotic enzymes suggests that exercise may control insulin release by activating other signaling pathways. The observed anaplerotic and cataplerotic enzymes enhancement might be related to ß-cell surviving rather than insulin secretion.


Assuntos
Enzimas/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/enzimologia , Condicionamento Físico Animal/fisiologia , ATP Citrato (pro-S)-Liase/metabolismo , Animais , Enzimas/análise , Glucose/farmacologia , Glutamato Desidrogenase/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Condicionamento Físico Animal/efeitos adversos , Resistência Física/fisiologia , Proteínas Quinases/metabolismo , Piruvato Carboxilase/metabolismo , Ratos , Ratos Wistar , Via Secretória/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
J Biol Chem ; 286(15): 12870-80, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21257748

RESUMO

Type 2 diabetes mellitus results from the complex association of insulin resistance and pancreatic ß-cell failure. Obesity is the main risk factor for type 2 diabetes mellitus, and recent studies have shown that, in diet-induced obesity, the hypothalamus becomes inflamed and dysfunctional, resulting in the loss of the perfect coupling between caloric intake and energy expenditure. Because pancreatic ß-cell function is, in part, under the control of the autonomic nervous system, we evaluated the role of hypothalamic inflammation in pancreatic islet function. In diet-induced obesity, the earliest markers of hypothalamic inflammation are present at 8 weeks after the beginning of the high fat diet; similarly, the loss of the first phase of insulin secretion is detected at the same time point and is restored following sympathectomy. Intracerebroventricular injection of a low dose of tumor necrosis factor α leads to a dysfunctional increase in insulin secretion and activates the expression of a number of markers of apoptosis in pancreatic islets. In addition, the injection of stearic acid intracerebroventricularly, which leads to hypothalamic inflammation through the activation of tau-like receptor-4 and endoplasmic reticulum stress, produces an impairment of insulin secretion, accompanied by increased expression of markers of apoptosis. The defective insulin secretion, in this case, is partially dependent on sympathetic signal-induced peroxisome proliferator receptor-γ coactivator Δα and uncoupling protein-2 expression and is restored after sympathectomy or following PGC1α expression inhibition by an antisense oligonucleotide. Thus, the autonomic signals generated in concert with hypothalamic inflammation can impair pancreatic islet function, a phenomenon that may explain the early link between obesity and defective insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Doenças Hipotalâmicas/complicações , Doenças Hipotalâmicas/metabolismo , Hipotálamo/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Diabetes Mellitus Tipo 2/patologia , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Doenças Hipotalâmicas/induzido quimicamente , Doenças Hipotalâmicas/patologia , Hipotálamo/patologia , Inflamação/induzido quimicamente , Inflamação/complicações , Inflamação/metabolismo , Inflamação/patologia , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/patologia , Masculino , Obesidade/metabolismo , Obesidade/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Wistar , Ácidos Esteáricos/efeitos adversos , Ácidos Esteáricos/farmacologia , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/patologia , Fatores de Tempo , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/efeitos adversos , Fator de Necrose Tumoral alfa/farmacologia
16.
Liver Int ; 31(3): 348-53, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21040407

RESUMO

BACKGROUND: Industrial toxin and drugs have been associated with non-alcoholic fatty liver disease (NAFLD); in these cases, the disease has been termed toxicant-associated steatohepatitis (TASH). AIM: This study hypothesizes that the use of anabolic-androgenic steroids (AAS) could also be a risk factor to TASH or better toxicant-associated fatty liver disease (TAFLD) development. METHODOLOGY: Case-control study including 180 non-competitive recreational male bodybuilders from August/2007 to March/2009. Ninety-five had a history of intramuscular AAS use (cases; G1) and 85 were non-users (controls; G2). They underwent a clinical evaluation and abdominal ultrasound, and their blood levels of aminotransferases, creatine phosphokinase (CPK), lipids, glucose and insulin were measured. TAFLD criteria: history of AAS use >2 years; presence of hepatic steatosis on ultrasound and/or aminotransferase alterations with normal CPK levels; exclusion of ethanol intake ≥20 g/day or use of other drugs; and exclusion of obesity, dyslipidaemia, diabetes and other liver diseases. Homeostasis model assessment for insulin resistance ≥3 was considered insulin resistant. Independent t-test, odds ratio (OR) and 95% confidence intervals (95% CI) were calculated. RESULTS: All cases were asymptomatic. Clinical and laboratorial data were similar in G1 and G2 (P>0.05). TAFLD criteria were observed in 12.6% of the G1 cases and 2.4% of controls had criteria compliant with non-alcoholic fatty liver related to metabolic conditions. OR was 6.0 (95% CI: 1.3-27.6). CONCLUSIONS: These results suggest that AAS could be a possible new risk factor for TAFLD. In this type of fatty liver disease, the individuals had a low body fat mass and they did not present insulin resistance.


Assuntos
Anabolizantes/efeitos adversos , Androgênios/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/efeitos adversos , Esportes , Adulto , Anabolizantes/administração & dosagem , Androgênios/administração & dosagem , Brasil/epidemiologia , Estudos de Casos e Controles , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Fígado Gorduroso/epidemiologia , Fígado Gorduroso/etiologia , Humanos , Injeções Intramusculares , Resistência à Insulina/fisiologia , Masculino , Hepatopatia Gordurosa não Alcoólica , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/etiologia , Transaminases/sangue , Adulto Jovem
17.
Br J Nutr ; 103(9): 1237-50, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19948081

RESUMO

Pancreatic beta-cells and skeletal muscle act in a synergic way in the control of systemic glucose homeostasis. Several pyruvate-dependent and -independent shuttles enhance tricarboxylic acid cycle intermediate (TACI) anaplerosis and increase beta-cell ATP:ADP ratio, triggering insulin exocytotic mechanisms. In addition, mitochondrial TACI cataplerosis gives rise to the so-called metabolic coupling factors, which are also related to insulin release. Peripheral insulin resistance seems to be related to skeletal muscle fatty acid (FA) accumulation and oxidation imbalance. In this sense, exercise has been shown to enhance skeletal muscle TACI anaplerosis, increasing FA oxidation and by this manner restores insulin sensitivity. Protein malnutrition reduces beta-cell insulin synthesis, release and peripheral sensitivity. Despite little available data concerning mitochondrial metabolism under protein malnutrition, evidence points towards reduced beta-cell and skeletal muscle mitochondrial capacity. The observed decrease in insulin synthesis and release may reflect reduced anaplerotic and cataplerotic capacity. Furthermore, insulin release is tightly coupled to ATP:ADP rise which in turn is related to TACI anaplerosis. The effect of protein malnutrition upon peripheral insulin resistance is time-dependent and directly related to FA oxidation capacity. In contrast to beta-cells, TACI anaplerosis and cataplerosis pathways in skeletal muscle seem to control FA oxidation and regulate insulin resistance.


Assuntos
Proteínas Alimentares , Resistência à Insulina , Insulina/metabolismo , Desnutrição/fisiopatologia , Músculo Esquelético/metabolismo , Humanos
18.
J Strength Cond Res ; 23(3): 1045-50, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19387368

RESUMO

Predicting one repetition maximum equations accuracy in paralympic rowers Resistance training intensity is prescribed using percentiles of the maximum strength, defined as the maximum tension generated for a muscle or muscular group. This value is found through the application of the one maximal repetition (1RM) test. One maximal repetition test demands time and still is not appropriate for some populations because of the risk it offers. In recent years, the prediction of maximal strength, through predicting equations, has been used to prevent the inconveniences of the 1RM test. The purpose of this study was to verify the accuracy of 12 1RM predicting equations for disabled rowers. Nine male paralympic rowers (7 one-leg amputated rowers and 2 cerebral paralyzed rowers; age, 30 +/- 7.9 years; height, 175.1 +/- 5.9 cm; weight, 69 +/- 13.6 kg) performed 1RM test for lying T-bar row and flat barbell bench press exercises to determine upper-body strength and leg press exercise to determine lower-body strength. One maximal repetition test was performed, and based on submaximal repetitions loads, several linear and exponential equations models were tested with regard of their accuracy. We did not find statistical differences for lying T-bar row and bench press exercises between measured and predicted 1RM values (p = 0.84 and 0.23 for lying T-bar row and flat barbell bench press, respectively); however, leg press exercise reached a high significant difference between measured and predicted values (p < 0.01). In conclusion, rowers with motor disabilities tolerate 1RM testing procedures, and predicting 1RM equations are accurate for bench press and lying T-bar row, but not for leg press, in this kind of athlete.


Assuntos
Pessoas com Deficiência , Força Muscular/fisiologia , Treinamento Resistido/métodos , Esportes/fisiologia , Adulto , Análise de Variância , Humanos , Masculino , Matemática , Valor Preditivo dos Testes , Estatísticas não Paramétricas
19.
J Int Soc Sports Nutr ; 3: 37-44, 2006 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18500971

RESUMO

Exercise training is known to induce an increase in free radical production potentially leading to enhanced muscle injury. Vitamins C and E are well known antioxidants that may prevent muscle cell damage. The purpose of this study was to determine the effects of these supplemental antioxidant vitamins on markers of oxidative stress, muscle damage and performance of elite soccer players. Ten male young soccer players were divided into two groups. Supplementation group (n = 5) received vitamins C and E supplementation daily during the pre-competitive season (S group), while the placebo group (PL group, n = 5) received a pill containing maltodextrin. Both groups performed the same training load during the three-month pre-season training period. Erythrocyte antioxidant enzymes glutathione reductase, catalase and plasma carbonyl derivatives did not show any significant variation among the experimental groups. Similarly, fitness level markers did not differ among the experimental groups. However, S group demonstrated lower lipid peroxidation and muscle damage levels (p < 0.05) compared to PL group at the final phase of pre-competitive season. In conclusion, our data demonstrated that vitamin C and E supplementation in soccer players may reduce lipid peroxidation and muscle damage during high intensity efforts, but did not enhance performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...