Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 17(7): e13739, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948538

RESUMO

The Seychelles magpie-robin's (SMR) five island populations exhibit some of the lowest recorded levels of genetic diversity among endangered birds, and high levels of inbreeding. These populations collapsed during the 20th century, and the species was listed as Critically Endangered in the IUCN Red List in 1994. An assisted translocation-for-recovery program initiated in the 1990s increased the number of mature individuals, resulting in its downlisting to Endangered in 2005. Here, we explore the temporal genomic erosion of the SMR based on a dataset of 201 re-sequenced whole genomes that span the past ~150 years. Our sample set includes individuals that predate the bottleneck by up to 100 years, as well as individuals from contemporary populations established during the species recovery program. Despite the SMR's recent demographic recovery, our data reveal a marked increase in both the genetic load and realized load in the extant populations when compared to the historical samples. Conservation management may have reduced the intensity of selection by increasing juvenile survival and relaxing intraspecific competition between individuals, resulting in the accumulation of loss-of-function mutations (i.e. severely deleterious variants) in the rapidly recovering population. In addition, we found a 3-fold decrease in genetic diversity between temporal samples. While the low genetic diversity in modern populations may limit the species' adaptability to future environmental changes, future conservation efforts (including IUCN assessments) may also need to assess the threats posed by their high genetic load. Our computer simulations highlight the value of translocations for genetic rescue and show how this could halt genomic erosion in threatened species such as the SMR.

2.
Curr Biol ; 31(16): R989-R990, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34428417

RESUMO

Tortoises (land turtles) are familiar animals and are generally assumed to be strict herbivores. Their ecological roles are most obvious in giant tortoise species which, due to their size and local abundance, play major roles as keystone species and ecosystem engineers1-3. In the Galápagos and Seychelles islands these species are known to play major roles as the islands' largest herbivores, with exceptionally high biomass and consuming up to 11% of primary production1. In addition they act as ecosystem engineers, dispersing seeds, breaking vegetation and eroding rocks2. However, as slow-moving poikilotherms most people assume their behaviour to be simple. Here we present video evidence of a Seychelles giant tortoise (Aldabrachelys gigantea) attacking a tern chick and pursuing it along a log. Finally the tortoise killed the chick and was observed to eat it. Other tortoises in the same area have been seen making similar attacks, although those were not fully documented. We believe that the exceptional combination of a tree-nesting tern colony with a resident giant tortoise population has created conditions leading to systematic hunting of birds by several individual tortoises; an entirely novel behavioural strategy for any tortoise species. VIDEO ABSTRACT.


Assuntos
Comportamento Predatório , Tartarugas , Animais , Aves , Ecossistema , Tartarugas/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...