Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8938, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637629

RESUMO

Heart failure is a serious medical condition with a poor prognosis. Current treatments can only help manage the symptoms and slow the progression of heart failure. However, there is currently no cure to prevent and reverse cardiac remodeling. Transcription factors are in a central role in various cellular processes, and in the heart, GATA4 and NKX2-5 transcription factors mediate hypertrophic responses and remodeling. We have identified compounds that modulate the synergistic interaction of GATA4 and NKX2-5 and shown that the most promising compound (1, 3i-1000) is cardioprotective in vitro and in vivo. However, direct evidence of its binding site and mechanism of action has not been available. Due to the disordered nature of transcription factors, classical target engagement approaches cannot be utilized. Here, we synthesized a small-molecule ligand-binding pulldown probe of compound 1 to utilize affinity chromatography alongside CETSA, AlphaScreen, and molecular modeling to study ligand binding. These results provide the first evidence of direct physical binding of compound 1 selectively to GATA4. While developing drugs that target transcription factors presents challenges, advances in technologies and knowledge of intrinsically disordered proteins enable the identification of small molecules that can selectively target transcription factors.


Assuntos
Insuficiência Cardíaca , Fatores de Transcrição , Humanos , Proteína Homeobox Nkx-2.5/metabolismo , Ligantes , Fatores de Transcrição/metabolismo , Cromatografia de Afinidade , Fator de Transcrição GATA4/metabolismo , Proteínas de Homeodomínio/metabolismo
2.
Stem Cell Res Ther ; 15(1): 5, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167208

RESUMO

BACKGROUND: The prevalence of heart failure is constantly increasing, and the prognosis of patients remains poor. New treatment strategies to preserve cardiac function and limit cardiac hypertrophy are therefore urgently needed. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used as an experimental platform for cardiac in vitro studies. However, in contrast to adult cardiomyocytes, hiPSC-CMs display immature morphology, contractility, gene expression and metabolism and hence express a naive phenotype that resembles more of a foetal cardiomyocyte. METHODS: A library of 14 novel compounds was synthesized in-house and screened for GATA4-NKX2-5 reporter activity and cellular toxicity. The most potent compound, 3i-1262, along with previously reported GATA4-acting compounds, were selected to investigate their effects on hypertrophy induced by endothelin-1 or mechanical stretch. Morphological changes and protein expression were characterized using immunofluorescence staining and high-content analysis. Changes in gene expression were studied using qPCR and RNA sequencing. RESULTS: The prototype compound 3i-1262 inhibited GATA4-NKX2-5 synergy in a luciferase reporter assay. Additionally, the isoxazole compound 3i-1262 inhibited the hypertrophy biomarker B-type natriuretic peptide (BNP) by reducing BNP promoter activity and proBNP expression in neonatal rat ventricular myocytes and hiPSC-CMs, respectively. Treatment with 3i-1262 increased metabolic activity and cardiac troponin T expression in hiPSC-CMs without affecting GATA4 protein levels. RNA sequencing analysis revealed that 3i-1262 induces gene expression related to metabolic activity and cell cycle exit, indicating a change in the identity and maturity status of hiPSC-CMs. The biological processes that were enriched in upregulated genes in response to 3i-1262 were downregulated in response to mechanical stretch, and conversely, the downregulated processes in response to 3i-1262 were upregulated in response to mechanical stretch. CONCLUSIONS: There is currently a lack of systematic understanding of the molecular modulation and control of hiPSC-CM maturation. In this study, we demonstrated that the GATA4-interfering compound 3i-1262 reorganizes the cardiac transcription factor network and converts hypertrophic signalling towards enhanced cardiomyocyte identity and maturity. This conceptually unique approach provides a novel structural scaffold for further development as a modality to promote cardiomyocyte specification and maturity.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Hipertrofia/metabolismo , Fatores de Transcrição/metabolismo , Transdução de Sinais , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo
3.
Bioorg Med Chem ; 96: 117512, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939493

RESUMO

Clinically manifested resistance of bacteria to antibiotics has emerged as a global threat to society and there is an urgent need for the development of novel classes of antibacterial agents. Recently, the use of phosphorus in antibacterial agents has been explored in quite an unprecedent manner. In this comprehensive review, we summarize the use of phosphorus-containing moieties (phosphonates, phosphonamidates, phosphonopeptides, phosphates, phosphoramidates, phosphinates, phosphine oxides, and phosphoniums) in compounds with antibacterial effect, including their use as ß-lactamase inhibitors and antibacterial disinfectants. We show that phosphorus-containing moieties can serve as novel pharmacophores, bioisosteres, and prodrugs to modify pharmacodynamic and pharmacokinetic properties. We further discuss the mechanisms of action, biological activities, clinical use and highlight possible future prospects.


Assuntos
Organofosfonatos , Fósforo , Fósforo/química , Fósforo/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores de beta-Lactamases/farmacologia , Bactérias , Organofosfonatos/química
4.
Front Microbiol ; 13: 926170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733960

RESUMO

New classes of antibiotics are urgently needed in the fight against multidrug-resistant bacteria. Drug repurposing has emerged as an alternative approach to accelerate antimicrobial research and development. In this study, we screened a library of sphingosine-1-phosphate receptor (S1PR) modulators against Staphylococcus aureus and identified five active compounds. Among them, etrasimod (APD334), an investigational drug for the treatment of ulcerative colitis, displayed the best inhibitory activity against S. aureus when growing as free-floating planktonic cells and within biofilms. In follow-up studies, etrasimod showed bactericidal activity and drastic reduction of viable bacteria within 1 h of exposure. It also displayed a potent activity against other Gram-positive bacteria, including penicillin- and methicillin-resistant S. aureus strains, S. epidermidis, and Enterococcus faecalis, with a minimum inhibitory concentration (MIC) ranging from 5 to 10 µM (2.3-4.6 µg/mL). However, no inhibition of viability was observed against Gram-negative bacteria Acinetobacter baumannii, Escherichia coli, and Pseudomonas aeruginosa, showing that etrasimod preferably acts against Gram-positive bacteria. On the other hand, etrasimod was shown to inhibit quorum sensing (QS) signaling in Chromobacterium violaceum, suggesting that it may block the biofilm formation by targeting QS in certain Gram-negative bacteria. Furthermore, etrasimod displayed a synergistic effect with gentamicin against S. aureus, thus showing potential to be used in antibiotic combination therapy. Finally, no in vitro toxicity toward mammalian cells was observed. In conclusion, our study reports for the first time the potential of etrasimod as a repurposed antibacterial compound against Gram-positive bacteria.

5.
ACS Omega ; 6(28): 18465-18486, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308078

RESUMO

We recently identified fingolimod as a potent antibiofilm compound by screening FDA-approved drugs. To study if the antibacterial activity of fingolimod could be further improved and to explore in-depth structure-activity relationships, we synthesized 28 novel fingolimod derivatives and evaluated their efficacy against Staphylococcus aureus grown in planktonic/single cell and biofilms. The most effective derivatives were tested on preformed S. aureus biofilms and against Gram-negative bacteria Acinetobacter baumannii and Pseudomonas aeruginosa, using fingolimod as the reference compound. Seven derivatives were more effective against S. aureus, while five other derivatives showed improved activity against P. aeruginosa and/or A. baumannii, with no apparent change in cytotoxicity on human cells. The most interesting derivatives, compounds 43 and 55, displayed a broader spectrum of antibacterial activity, possibly exerted by the change of the para-hydrocarbon chain to a meta position for 43 and by an additional hydroxyl group for 55.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...