Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30533682

RESUMO

Here we report a draft genome sequence of Azoarcus communis SWub3, a nitrogen-fixing bacterium isolated from root tissues of Kallar grass in Pakistan.

2.
Nat Commun ; 9(1): 3562, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177705

RESUMO

A tantalizing question in evolutionary biology is whether evolution can be predicted from past experiences. To address this question, we created a coherent compendium of more than 15,000 mutation events for the bacterium Escherichia coli under 178 distinct environmental settings. Compendium analysis provides a comprehensive view of the explored environments, mutation hotspots and mutation co-occurrence. While the mutations shared across all replicates decrease with the number of replicates, our results argue that the pairwise overlapping ratio remains the same, regardless of the number of replicates. An ensemble of predictors trained on the mutation compendium and tested in forward validation over 35 evolution replicates achieves a 49.2 ± 5.8% (mean ± std) precision and 34.5 ± 5.7% recall in predicting mutation targets. This work demonstrates how integrated datasets can be harnessed to create predictive models of evolution at a gene level and elucidate the effect of evolutionary processes in well-defined environments.


Assuntos
Meio Ambiente , Escherichia coli/genética , Evolução Molecular , Previsões , Modelos Genéticos , Mutação , Reprodutibilidade dos Testes
3.
Mol Biol Evol ; 34(3): 707-717, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007978

RESUMO

Microbes exhibit short and long term responses when exposed to challenging environmental conditions. To what extent these responses are correlated, what their evolutionary potential is and how they translate to cross-stress fitness is still unclear. In this study, we comprehensively characterized the response of Escherichia coli populations to four abiotic stresses (n-butanol, osmotic, acidic, and oxidative) and their combinations by performing genome-scale transcriptional analysis and growth profiling. We performed an analysis of their cross-stress behavior which identified 15 cases of cross- protection and one case of cross vulnerability. To elucidate the evolutionary potential of stress responses to individual stresses and stress combinations, we re-sequenced E. coli populations evolved in those four environments for 500 generations. We developed and applied a network-driven method that integrates mutations and differential expression to identify core and stress-specific gene communities that are likely to have a phenotypic impact. Our results suggest that beyond what is expected from the general stress response mechanisms, cross-stress behavior arises both from common pathways, several including metal ion binding and glycolysis/gluconeogenesis, and stress-specific expression programs. The stress-specific dependences uncovered, argue that cross-stress behavior is ubiquitous and central to understanding microbial physiology under stressful conditions.


Assuntos
Adaptação Fisiológica/genética , Escherichia coli/genética , Estresse Fisiológico/genética , Aclimatação/genética , Evolução Biológica , Meio Ambiente , Perfilação da Expressão Gênica/métodos , Aptidão Genética , Mutação , Transcriptoma
4.
Nat Commun ; 7: 13090, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713404

RESUMO

A significant obstacle in training predictive cell models is the lack of integrated data sources. We develop semi-supervised normalization pipelines and perform experimental characterization (growth, transcriptional, proteome) to create Ecomics, a consistent, quality-controlled multi-omics compendium for Escherichia coli with cohesive meta-data information. We then use this resource to train a multi-scale model that integrates four omics layers to predict genome-wide concentrations and growth dynamics. The genetic and environmental ontology reconstructed from the omics data is substantially different and complementary to the genetic and chemical ontologies. The integration of different layers confers an incremental increase in the prediction performance, as does the information about the known gene regulatory and protein-protein interactions. The predictive performance of the model ranges from 0.54 to 0.87 for the various omics layers, which far exceeds various baselines. This work provides an integrative framework of omics-driven predictive modelling that is broadly applicable to guide biological discovery.


Assuntos
Biologia Computacional/métodos , Escherichia coli/metabolismo , Modelos Biológicos , Meio Ambiente , Escherichia coli/crescimento & desenvolvimento
5.
PLoS Comput Biol ; 11(3): e1004127, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25774498

RESUMO

A tantalizing question in cellular physiology is whether the cellular state and environmental conditions can be inferred by the expression signature of an organism. To investigate this relationship, we created an extensive normalized gene expression compendium for the bacterium Escherichia coli that was further enriched with meta-information through an iterative learning procedure. We then constructed an ensemble method to predict environmental and cellular state, including strain, growth phase, medium, oxygen level, antibiotic and carbon source presence. Results show that gene expression is an excellent predictor of environmental structure, with multi-class ensemble models achieving balanced accuracy between 70.0% (±3.5%) to 98.3% (±2.3%) for the various characteristics. Interestingly, this performance can be significantly boosted when environmental and strain characteristics are simultaneously considered, as a composite classifier that captures the inter-dependencies of three characteristics (medium, phase and strain) achieved 10.6% (±1.0%) higher performance than any individual models. Contrary to expectations, only 59% of the top informative genes were also identified as differentially expressed under the respective conditions. Functional analysis of the respective genetic signatures implicates a wide spectrum of Gene Ontology terms and KEGG pathways with condition-specific information content, including iron transport, transferases, and enterobactin synthesis. Further experimental phenotypic-to-genotypic mapping that we conducted for knock-out mutants argues for the information content of top-ranked genes. This work demonstrates the degree at which genome-scale transcriptional information can be predictive of latent, heterogeneous and seemingly disparate phenotypic and environmental characteristics, with far-reaching applications.


Assuntos
Meio Ambiente , Escherichia coli/genética , Escherichia coli/fisiologia , Ciências Forenses/métodos , Perfilação da Expressão Gênica/métodos , Fenótipo , Algoritmos , Área Sob a Curva , Biomarcadores/análise , Biomarcadores/metabolismo , Escherichia coli/metabolismo , Redes e Vias Metabólicas
6.
Biochem J ; 462(2): 373-84, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24825021

RESUMO

MBF1 (multi-protein bridging factor 1) is a protein containing a conserved HTH (helix-turn-helix) domain in both eukaryotes and archaea. Eukaryotic MBF1 has been reported to function as a transcriptional co-activator that physically bridges transcription regulators with the core transcription initiation machinery of RNA polymerase II. In addition, MBF1 has been found to be associated with polyadenylated mRNA in yeast as well as in mammalian cells. aMBF1 (archaeal MBF1) is very well conserved among most archaeal lineages; however, its function has so far remained elusive. To address this, we have conducted a molecular characterization of this aMBF1. Affinity purification of interacting proteins indicates that aMBF1 binds to ribosomal subunits. On sucrose density gradients, aMBF1 co-fractionates with free 30S ribosomal subunits as well as with 70S ribosomes engaged in translation. Binding of aMBF1 to ribosomes does not inhibit translation. Using NMR spectroscopy, we show that aMBF1 contains a long intrinsically disordered linker connecting the predicted N-terminal zinc-ribbon domain with the C-terminal HTH domain. The HTH domain, which is conserved in all archaeal and eukaryotic MBF1 homologues, is directly involved in the association of aMBF1 with ribosomes. The disordered linker of the ribosome-bound aMBF1 provides the N-terminal domain with high flexibility in the aMBF1-ribosome complex. Overall, our findings suggest a role for aMBF1 in the archaeal translation process.


Assuntos
Proteínas Arqueais/metabolismo , Subunidades Ribossômicas Menores de Arqueas/metabolismo , Sulfolobus solfataricus/metabolismo , Transativadores/metabolismo , Motivos de Aminoácidos , Proteínas Arqueais/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Subunidades Ribossômicas Menores de Arqueas/química , Transativadores/química
7.
J Bacteriol ; 195(3): 417-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23161026

RESUMO

Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition.


Assuntos
Proteínas de Bactérias/metabolismo , Celulose/metabolismo , GMP Cíclico/análogos & derivados , Salmonella enteritidis/metabolismo , Salmonella typhimurium/metabolismo , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Movimento/fisiologia , Polissacarídeos Bacterianos/metabolismo , Rotação , Salmonella enteritidis/citologia , Salmonella enteritidis/genética , Salmonella typhimurium/citologia , Salmonella typhimurium/genética , Transdução de Sinais/fisiologia
8.
J Bacteriol ; 193(11): 2861-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21478358

RESUMO

HflX GTPases are found in all three domains of life, the Bacteria, Archaea, and Eukarya. HflX from Escherichia coli has been shown to bind to the 50S ribosomal subunit in a nucleotide-dependent manner, and this interaction strongly stimulates its GTPase activity. We recently determined the structure of an HflX ortholog from the archaeon Sulfolobus solfataricus (SsoHflX). It revealed the presence of a novel HflX domain that might function in RNA binding and is linked to a canonical G domain. This domain arrangement is common to all archaeal, bacterial, and eukaryotic HflX GTPases. This paper shows that the archaeal SsoHflX, like its bacterial orthologs, binds to the 50S ribosomal subunit. This interaction does not depend on the presence of guanine nucleotides. The HflX domain is sufficient for ribosome interaction. Binding appears to be restricted to free 50S ribosomal subunits and does not occur with 70S ribosomes engaged in translation. The fingerprint (1)H-(15)N heteronuclear correlation nuclear magnetic resonance (NMR) spectrum of SsoHflX reveals a large number of well-resolved resonances that are broadened upon binding to the 50S ribosomal subunit. The GTPase activity of SsoHflX is stimulated by crude fractions of 50S ribosomal subunits, but this effect is lost with further high-salt purification of the 50S ribosomal subunits, suggesting that the stimulation depends on an extrinsic factor bound to the 50S ribosomal subunit. Our results reveal common properties but also marked differences between archaeal and bacterial HflX proteins.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Nucleotídeos/metabolismo , Subunidades Ribossômicas Maiores de Arqueas/metabolismo , Sulfolobus solfataricus/enzimologia , Espectroscopia de Ressonância Magnética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas
9.
Proc Natl Acad Sci U S A ; 106(19): 7997-8002, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19416883

RESUMO

Bacteria have developed an exclusive signal transduction system involving multiple diguanylate cyclase and phosphodiesterase domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) that modulate the levels of the same diffusible molecule, 3'-5'-cyclic diguanylic acid (c-di-GMP), to transmit signals and obtain specific cellular responses. Current knowledge about c-di-GMP signaling has been inferred mainly from the analysis of recombinant bacteria that either lack or overproduce individual members of the pathway, without addressing potential compensatory effects or interferences between them. Here, we dissected c-di-GMP signaling by constructing a Salmonella strain lacking all GGDEF-domain proteins and then producing derivatives, each restoring 1 protein. Our analysis showed that most GGDEF proteins are constitutively expressed and that their expression levels are not interdependent. Complete deletion of genes encoding GGDEF-domain proteins abrogated virulence, motility, long-term survival, and cellulose and fimbriae synthesis. Separate restoration revealed that 4 proteins from Salmonella and 1 from Yersinia pestis exclusively restored cellulose synthesis in a c-di-GMP-dependent manner, indicating that c-di-GMP produced by different GGDEF proteins can activate the same target. However, the restored strain containing the STM4551-encoding gene recovered all other phenotypes by means of gene expression modulation independently of c-di-GMP. Specifically, fimbriae synthesis and virulence were recovered through regulation of csgD and the plasmid-encoded spvAB mRNA levels, respectively. This study provides evidence that the regulation of the GGDEF-domain proteins network occurs at 2 levels: a level that strictly requires c-di-GMP to control enzymatic activities directly, restricted to cellulose synthesis in our experimental conditions, and another that involves gene regulation for which c-di-GMP synthesis can be dispensable.


Assuntos
GMP Cíclico/análogos & derivados , Salmonella/genética , Animais , Fenômenos Fisiológicos Bacterianos , Biofilmes , Domínio Catalítico , GMP Cíclico/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Camundongos , Modelos Biológicos , Nucleotídeos/química , Fenótipo , Estrutura Terciária de Proteína , Salmonella/metabolismo , Salmonella/patogenicidade , Transdução de Sinais , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...