Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 60(8): 2275-2285, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37273572

RESUMO

Whey protein was fortified with a microencapsulated fraction of Stevia rebaudiana, in the proportion 1:4 (w/w), with maltodextrin from the elite variety of Stevia UEM-13, rich in antioxidant compounds, and evaluated its antioxidant and antidiabetic potential in vitro. The fraction in ethyl acetate, the microencapsulated fraction, the whey protein obtained by membrane and a commercial whey protein were characterized and were also investigated solubility, microencapsulation efficiency and stability and digestion in vitro. In addition, these products and two formulations of the icroencapsulated fraction with the obtained whey protein were tested for their potential to inhibit the α-amylase and α-glucosidase enzyme (antidiabetic activity). The microencapsulated fraction (0.5%) and the supplement fortified with the 20% fraction microencapsulated showed inhibitory potential for the enzyme. As for the α-glucosidase enzyme, all products tested showed inhibition, with the formulation with 1.6% microencapsulated fraction added to whey protein being significantly higher. The microencapsulated fraction showed better solubility and stability, including in vitro digestion analysis, and showed antioxidant and antidiabetic capacity. A sensory evaluation was performed with panelists who regularly consume whey protein supplements and products with stevia and the supplement formulation with 1.6 g microencapsulated stevia per 100 g of whey protein have good sensory acceptance.

2.
An Acad Bras Cienc ; 93(suppl 4): e20210571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34706010

RESUMO

Several works have shown different aspects of the use of the plant Moringa oleifera. However, few review studies bring an approach to its use in food preparation, specifying its role as a functional food and its use as a natural additive, focusing on food biochemistry and including sensory acceptance and safety. Composed by multiple bioactive substances, Moringa oleifera has the potential to be used as a food additive, mainly as a preservative with the potential to prevent lipid oxidation and other unwanted chemical reactions that lead to product deterioration. Furthermore, it can improve the physicochemical characteristics of food, increasing its quality and shelf life. It also promotes nutritional improvement, elevating protein, mineral, and vitamin levels. Despite this, the sensorial characteristics of this plant result in a low consumer acceptance of the fortified products, which is a problem for the food industry. Apart from inconclusive works, some data involving Moringa's safety are contradictory, resulting in its commercialization prohibition in Brazil in 2019. This review focused on important data about Moringa use to contribute to the literature and to the food industry, describing information about this medicinal plant effects on food products.


Assuntos
Moringa oleifera , Brasil , Aditivos Alimentares , Alimento Funcional , Minerais , Extratos Vegetais , Folhas de Planta
3.
J Food Sci ; 85(10): 3590-3600, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32888354

RESUMO

This work aimed to formulate and perform physicochemical and functional characterization of maltodextrin microcapsules containing ethanolic extract of stevia, rich in antioxidant compounds, encapsulated by a spray-drying process with two maltodextrins (DE10 and DE19). The powders were named M10 and M19, respectively. We analyzed the physicochemical parameters, antidiabetic activity, cytotoxicity, bioaccessibility of the compounds by in vitro digestion, as well as the structure of the microcapsules by scanning electron microscopy. Microcapsules showed higher solubility (∼35%), lower moisture content (∼29%), and the maltodextrin DE10 had higher efficiency as an encapsulating agent (87%) when compared to DE19 (76%) and showed well-defined spherical structures. The microencapsulation preserved the content of phenolic compounds and antioxidant activity present in the extract (7.2% and 87.5%, respectively). The bioaccessibility of these microencapsulated compounds and antioxidant activity were higher under different conditions of in vitro digestion (mouth, gastric, and intestinal conditions) and showed no cytotoxic effects. We identified 41 compounds (by UHPLC-MS/MS-Qtof) related to the nutritional benefits offered by stevia and the microencapsulation technique can be recommended to preserve bioactive compounds. PRACTICAL APPLICATION: Ethanol extract from stevia leaves contains antioxidant phytochemicals related to the nutritional benefits of stevia. However, this extract presents low solubility and consequently low bioaccessibility under in vitro digestion. The microencapsulation process protects the bioactive compounds of the different pH from digestion and improves the physical-chemical parameters of the extract, increasing its applicability as a possible food additive.


Assuntos
Composição de Medicamentos/métodos , Compostos Fitoquímicos/química , Extratos Vegetais/química , Stevia/química , Antioxidantes/química , Antioxidantes/farmacologia , Cápsulas/química , Cápsulas/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dessecação/métodos , Digestão , Trato Gastrointestinal , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Fenóis/química , Fenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Polissacarídeos/química , Pós/química , Pós/farmacologia , Solubilidade , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...