Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(32)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38670125

RESUMO

Recent studies have reported that lead-halide perovskites are the most efficient energy-harvesting materials. Regardless of their high-output energy and structural stability, lead-based products have risk factors due to their toxicity. Therefore, lead-free perovskites that offer green energy are the expected alternatives. We have taken CsGeX3(X = Cl, Br, and I) as lead-free halide perovskites despite knowing the low power conversion rate. Herein, we have tried to study the mechanisms of enhancement of energy-harvesting capabilities involving an interplay between structure and electronic properties. A density functional theory simulation of these materials shows a decrease in the band gaps, lattice parameters, and volumes with increasing applied pressure. We report the high piezoelectric responses and high electro-mechanical conversion rates, which are intriguing for generating electricity through mechanical stress.

2.
J Phys Condens Matter ; 36(6)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37875142

RESUMO

In this study, we explored the electronic and thermoelectric (TE) properties of the Na-based Quaternary Heusler Alloys (QHAs) NaHfXGe (X = Co, Rh, Ir) using density functional theory (DFT). We performed the spin-polarized DFT calculations at the general gradient approximation (GGA) level and confirmed the ground state non-magnetic configuration of NaHfXGe. The mechanical and thermodynamical stabilities are analyzed and discussed to validate the stability by calculating the elastic constant and phonon dispersion curve. A thorough investigation on the electronic properties are carried out by performing the GGA, GGA+U, and GGA+SOC formalism where we report the semi-conducting characteristic of NaHfCoGe and NaHfRhGe QHAs. However, NaHfIrGe is predicted to be a non-magnetic metal. From the calculated optical properties we found that the most active optical absorption occurs within the vis-UV region withα>105 cm-1, therefore the studied QHAs are proposed to be a promising optoelectronic materials. The results of the thermodynamic properties have shown that NaHfXGe follows Debye's low-temperature specific heat law and the classical thermodynamics of the Dulong-Petit law at high temperatures. The calculated TE efficiency using GGA+SOC formalism atT= 1200 K are ZT∼1.22 and 0.57 for NaHfCoGe and NaHfRhGe, suggesting that these materials are potential TE materials to operate at high temperature.

3.
RSC Adv ; 12(42): 27666-27678, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36276010

RESUMO

Motivated by our previous work on pristine Na2SiO3, we proceeded with calculations on the structural, electronic, mechanical and piezoelectric properties of complex glass-like Na2Si1-x Ge x O3 (x = 0.0, 0.25, 0.50, 0.75, 1.0) by using density functional theory (DFT). Interestingly, the optimized bond lengths and bond angles of Na2SiO3 and Na2GeO3 resemble each other with high similarity. On doping we report the negative formation energy and feasibility of transition of Na2SiO3 → Na2GeO3 while the structural symmetry is preserved. Analyzing the electronic profile, we have observed a reduced band gap on increasing x = Ge concentration at Si-sites. All the systems are indirect band gap (Z-Γ) semiconductors. The studied systems have shown mechanical stabilities by satisfying the Born criteria for mechanical stability. The calculated results have shown highly anisotropic behaviour and high melting temperature, which are a signature of glass materials. The piezoelectric tensor (both direct and converse) is computed. The results thus obtained predict that the systems under investigation are potential piezoelectric materials for energy harvesting.

4.
RSC Adv ; 12(20): 12453-12462, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35480362

RESUMO

The structural, mechanical, electronic, optical and piezoelectric properties of Na2SiO3 are studied under varying compressive unidirectional pressure (0-50 GPa with a difference of 10 GPa) using density functional theory (DFT). The calculated structural properties agree well with previously reported results. At 12 GPa, our calculation shows a structural phase transition from orthorhombic Cmc21 to triclinic P1. The mechanical profile of Na2SiO3 structures under different compressive unidirectional pressures are analysed by calculating the elastic moduli, Poisson's ratio and eigenvalues of stiffness matrix. Our study shows the mechanical stability of the system up to a pressure of 40 GPa. Herein, we have obtained an indirect band gap of 2.97 eV at 0 GPa. Between 0-50 GPa, the band gaps are within the range 2.62 to 3.46 eV. The system in our study possesses a wide band gap and high optical absorption in the UV-Vis range of electromagnetic radiation. The calculated static refractive indices η x,y,z (0) are close to unity suggesting its transparency. For piezoelectric properties, we have reported the total Cartesian polarization. Our calculations have revealed that Na2SiO3 is a promising candidate for optoelectronic devices while its application in ferroelectric and piezoelectric devices could be improved with further research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...