Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(6): 5079-5088, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38290218

RESUMO

For the realization of truly reconfigurable metasurface technologies, dynamic spatial tuning of the metasurface resonance is required. Here we report the use of organic photoswitches as a means for the light-induced spatial tuning of metasurface resonances. Coating of a dielectric metasurface, hosting high-quality-factor resonances, with a spiropyran (SPA)-containing polymer enabled dynamic resonance tuning up to 4 times the resonance full-width at half-maximum with arbitrary spatial precision. A major benefit of employing photoswitches is the broad toolbox of chromophores available and the unique optical properties of each. In particular, SPA and azobenzene (AZO) photoswitches can both be switched with UV light but exhibit opposite refractive index changes. When applied to the metasurface, SPA induced a red shift in the metasurface resonance with a figure of merit of 97 RIU-1, while AZO caused a blue shift in the resonance with an even greater sensitivity of 100 RIU-1. Critically, SPA and AZO can be individually recovered with red and blue light, respectively. To exploit this advantage, we coated a dielectric metasurface with spatially offset SPA- and AZO-containing polymers to demonstrate wavelength-dependent, spatially resolved control over the metasurface resonance tuning.

2.
Opt Lett ; 41(15): 3391-4, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472576

RESUMO

We demonstrate a narrow-band plasmonic absorber based on a uniform array of nanoscale cylindrical dielectric resonators (DRs) on a metallic substrate at visible frequencies. Under a normally incident plane-wave excitation, the DRs resonate in their horizontal magnetic dipolar mode, which can be seen as localized plasmonic hot spots. Such a localized resonance also couples incident waves into surface plasmon polaritons (SPPs) bidirectionally, and perfect absorption is achieved by creating SPP standing waves. The simulation shows perfect absorption at 633 nm and 1.8% relative bandwidth with >90% absorption, while the measurement demonstrates maximum absorption of 90% at 636 nm. Both simulation and measurement results are analyzed with coupled mode theory. An additional numerical study elaborates on the dependence of absorption on the resonator size, period, and incidence angle.

3.
ACS Nano ; 10(1): 133-41, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26617198

RESUMO

Devices that manipulate light represent the future of information processing. Flat optics and structures with subwavelength periodic features (metasurfaces) provide compact and efficient solutions. The key bottleneck is efficiency, and replacing metallic resonators with dielectric resonators has been shown to significantly enhance performance. To extend the functionalities of dielectric metasurfaces to real-world optical applications, the ability to tune their properties becomes important. In this article, we present a mechanically tunable all-dielectric metasurface. This is composed of an array of dielectric resonators embedded in an elastomeric matrix. The optical response of the structure under a uniaxial strain is analyzed by mechanical-electromagnetic co-simulations. It is experimentally demonstrated that the metasurface exhibits remarkable resonance shifts. Analysis using a Lagrangian model reveals that strain modulates the near-field mutual interaction between resonant dielectric elements. The ability to control and alter inter-resonator coupling will position dielectric metasurfaces as functional elements of reconfigurable optical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA