Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Vet Sci ; 138: 167-177, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34153557

RESUMO

Adhesion molecules play an important role in urinary calculus formation. The expressions of adhesion molecules in renal tubular has been reported in some animals. However, the role of adhesion molecules in the process of sheep urinary calculus formation is still unclear. The magnesium ammonium phosphate (MAP) is the main component of sheep urinary calculus. In this paper, the sheep renal tubular epithelial cells (RTECs) were isolated and treated with MAP, the expressions of osteopontin (OPN), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and apoptosis-related indicators caspase-3, Bcl-2 and Bax in RTECs were observed, the viability of RTECs was detected by Cell Counting Kit-8 (CCK-8). The levels of superoxide dismutase (SOD) and malondialdehyde (MDA), and the expressions of inflammatory factors Interleukin-6 (IL-6), Interleukin-1 (IL-1), Interleukin-17 (IL-17) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent (ELISA). The histopathological observation of kidney in urolithiasis sheep was made. The results showed that MAP could reduce the viability and SOD activity, enhance the activity of MDA significantly and promote the expressions of IL-1, IL-6, IL-17 and TNF-α of RTECs. By western blot and qPCR methods, the expressions of ICAM-1, VCAM-1 and OPN increased in 48 h. In addition, the expression of caspase-3 increased significantly and the ratio of Bcl-2/Bax reduced with exposure to MAP. The renal tissue structure was seriously damaged, the RTECs in urolithiasis sheep were degenerative and necrotic.


Assuntos
Apoptose , Moléculas de Adesão Celular/metabolismo , Sobrevivência Celular , Citocinas/imunologia , Células Epiteliais/fisiologia , Estresse Oxidativo , Estruvita/metabolismo , Animais , Células Cultivadas , Molécula 1 de Adesão Intercelular/metabolismo , Rim/fisiologia , Osteopontina/metabolismo , Carneiro Doméstico/metabolismo , Carneiro Doméstico/urina , Cálculos Urinários/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...