Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 149(10): 6931-6941, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36840755

RESUMO

BACKGROUND: Penile cancer is a rare malignancy with a poor prognosis, even with various treatment options. Considering the little progress in the study of the pathogenesis and treatment of penile cancer because of the lack of models that mimic the biological properties of the tumor, we have developed a patient-derived xenograft (PDX) model and paired hydrogel-embedded histoculture drug sensitivity test (HDST) to screen for drugs that can inhibit tumors. The increased expression of XPO1, as a key nuclear export protein involved in the transport of various tumor suppressors and cell cycle regulatory proteins, is associated with the prognosis of a variety of tumors [World J Uroly 27(2):141-150, 2009]. Selinexor is an inhibitor of XPO1, which can treat cancers, such as multiple myeloma, gastric cancer, triple-negative breast cancer, and non-small cell carcinoma [Transl Androl Urol 6(5):785-790, 2017; OncoTargets Therapy 13:6405-6416, 2020]. However, whether XPO1 inhibition has a role in penile cancer remains unknown. Therefore, this article used the PDX and HDST models to investigate whether the inhibition of XPO1 has an effect on penile cancer and its underlying mechanism. METHODS: We used penile cancer tumor tissues to construct a PDX model of penile cancer and paired PDXE model and confirmed the consistency of PDX tumor tissues in source patients. Then, we assessed the ability of Selinexor to inhibit penile cancer tissues in vivo using a PDX model and in vitro by HDST. We also examined the potential mechanism of XPO1 action on penile cancer by IHC and TUNEL. Finally, we assessed the safety of the drug treatment by H&E and biochemical blood analysis. RESULTS: Result showed that the penile cancer PDX model and patient penile cancer tissues were clinically consistent in morphological characteristics and protein expression. In addition, Selinexor could inhibit tumor growth in PDX models and HDST. We found that P53, P21 expression was upregulated; Cyclin D1 expression was downregulated, and apoptosis of tumor cells was increased in the Selinexor-treated PDX model. Moreover, it had no significant effect on liver, kidney, and cardiac function. CONCLUSION: The PDX model of penile cancer was a powerful tool for penile cancer research and new drug development. It showed that Selinexor can effectively inhibit penile cancer in vitro and in vivo. In addition, XPO1 may affect P53, P21, and Cyclin D1 expression to regulate the growth and apoptosis of penile carcinoma.


Assuntos
Carcinoma , Neoplasias Penianas , Masculino , Animais , Humanos , Ciclina D1/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Neoplasias Penianas/tratamento farmacológico , Hidrogéis , Xenoenxertos , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Transporte Ativo do Núcleo Celular , Hidrazinas/farmacologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...