Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Clin Exp Med ; 8(4): 5361-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26131112

RESUMO

Osteopontin (OPN) involves in tumor formation, and strongly correlated with the tumor progression. It was overexpressed in human esophageal squamous cell carcinoma (ESCC). To study the molecular mechanisms of OPN in ESCC, we examined its roles in inhibiting proliferation and invasion of ECA-109 (esophageal squamous cell carcinoma) cells. The expression of OPN gene was knockdown by RNA interference (RNAi) in the Eca-109 cell. The transcription level of OPN was to detect by reverse transcription-quantitative PCR (RT-qPCR). Western blot assay was performed to detect the expression of OPN, Caspase-3,Caspase-8, Caspase-9, ERK1/2, phospho-ERK1/2 and MMP2 after RNAi. The cell proliferation and apoptosis were detected by MTT and Hoechst33342 assay. Transwell inserts was used for detecting ECA-109 cell's migration ability. The results shown that the level of OPN mRNA and protein was significantly reduced after RNAi. Proliferation and migration of cell line (ECA-109) was significantly inhibited in vitro. The protein phosphorylation and activation of ERK1/2 in the OPN RNAi group reduced significantly than the negative control groups. In Conclusion, the proliferation and migration of human ESCC can be inhibited by RNAi-targeting OPN. OPN can promote the expression of MMP2 through the ERK signaling pathways. OPN could serve as a potential therapeutic target for human ESCC.

2.
Cancer Cell Int ; 15: 59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26113801

RESUMO

AIM: This study sought to explore the exact mechanism of Matrine inhibited migration and invasion of human pancreatic cancer cells. METHODS: HPAC or Capan-1 cells were cultured in completed RPMI-1640 medium, contained with 50 µg/ml Matrine or 0.05 µg/ml docetaxel, respectively. Cell viability was evaluated by spectrophotometric analysis using MTT assay. Wound healing assay and transwell approach were used to detect the effects of Matrine on HPAC cell migration and invasion. Western Blot and RT-PCR were performed to detect the expressions of MT1-MMP, Wnt and ß-Catenin. CHIP assay was used to detect whether the MT1-MMP transcription activity correlated with Wnt signaling pathway. RESULTS: MTT results indicated that cell proliferration was inhibited by Matrine at a range of concentrations, especially at high dose. We further found that Matrine treatment significantly induced cell migration and invasion decreased. Interestingly, the expression of MT1-MMP decreased evidently upon Matrine treatment, paralleled with the expressions of Wnt and ß-Catenin detected by Western Blot and RT-PCR assay. Further analysis of MT1-MMP transcription activity revealed that Matrine reduced the expression of MT1-MMP mediated by Wnt signaling pathway. CONCLUSION: Matrine play a vital role in inhibiting HPAC cellular migration and invasion through down-regulating the expression of MT1-MMP via Wnt signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...