Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38921241

RESUMO

The crayfish optimization algorithm (COA), proposed in 2023, is a metaheuristic optimization algorithm that is based on crayfish's summer escape behavior, competitive behavior, and foraging behavior. COA has a good optimization performance, but it still suffers from the problems of slow convergence speed and sensitivity to the local optimum. To solve these problems, an improved multi-strategy crayfish optimization algorithm for solving numerical optimization problems, called IMCOA, is proposed to address the shortcomings of the original crayfish optimization algorithm for each behavioral strategy. Aiming at the imbalance between local exploitation and global exploration in the summer heat avoidance and competition phases, this paper proposes a cave candidacy strategy and a fitness-distance balanced competition strategy, respectively, so that these two behaviors can better coordinate the global and local optimization capabilities and escape from falling into the local optimum prematurely. The directly foraging formula is modified during the foraging phase. The food covariance learning strategy is utilized to enhance the population diversity and improve the convergence accuracy and convergence speed. Finally, the introduction of an optimal non-monopoly search strategy to perturb the optimal solution for updates improves the algorithm's ability to obtain a global best solution. We evaluated the effectiveness of IMCOA using the CEC2017 and CEC2022 test suites and compared it with eight algorithms. Experiments were conducted using different dimensions of CEC2017 and CEC2022 by performing numerical analyses, convergence analyses, stability analyses, Wilcoxon rank-sum tests and Friedman tests. Experiments on the CEC2017 and CEC2022 test suites show that IMCOA can strike a good balance between exploration and exploitation and outperforms the traditional COA and other optimization algorithms in terms of its convergence speed, optimization accuracy, and ability to avoid premature convergence. Statistical analysis shows that there is a significant difference between the performance of the IMCOA algorithm and other algorithms. Additionally, three engineering design optimization problems confirm the practicality of IMCOA and its potential to solve real-world problems.

2.
PLoS One ; 13(12): e0206517, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596674

RESUMO

An electronic nose was used to evaluate the bitterness and astringency of green tea, and the possible application of the sensor was assessed for the evaluation of different tasting green tea samples. Three different grades of green tea were measured with the electronic nose and electronic tongue. The sensor array of the E-nose was optimized by correlation analysis. The relationship between the signal of the optimized sensor array and the bitterness and astringency of green tea was developed using multiple linear regression (MLR), partial least squares regression (PLSR), and back propagation neural network (BPNN). BPNN is a multilayer feedforward neural network trained by an error propagation algorithm. The results showed that the BPNN model possessed good ability to predict the bitterness and astringency of green tea, with high correlation coefficients (R = 0.98 for bitterness and R = 0.96 for astringency) and relatively lower root mean square errors (RMSE) (0.25 for bitterness and 0.32 for astringency) for the calibration set. The R value is 0.92 and 0.87, and the RMSE is 0.34 and 0.55, for bitterness and astringency, respectively, of the prediction set. These results indicate that the electronic nose could be used as a feasible and reliable method to evaluate the taste of green tea. These results can provide a theoretical reference for rapid detection of the bitter and astringent taste of green tea using volatile odor information.


Assuntos
Nariz Eletrônico , Redes Neurais de Computação , Chá/química , Paladar
3.
IEEE Trans Vis Comput Graph ; 20(12): 2664-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26356980

RESUMO

In order to visualize and analyze complex collective data, complicated geometric structure of each data is desired to be mapped onto a canonical domain to enable map-based visual exploration. This paper proposes a novel volume-preserving mapping and registration method which facilitates effective collective data visualization. Given two 3-manifolds with the same topology, there exists a mapping between them to preserve each local volume element. Starting from an initial mapping, a volume restoring diffeomorphic flow is constructed as a compressible flow based on the volume forms at the manifold. Such a flow yields equality of each local volume element between the original manifold and the target at its final state. Furthermore, the salient features can be used to register the manifold to a reference template by an incompressible flow guided by a divergence-free vector field within the manifold. The process can retain the equality of local volume elements while registering the manifold to a template at the same time. An efficient and practical algorithm is also presented to generate a volume-preserving mapping and a salient feature registration on discrete 3D volumes which are represented with tetrahedral meshes embedded in 3D space. This method can be applied to comparative analysis and visualization of volumetric medical imaging data across subjects. We demonstrate an example application in multimodal neuroimaging data analysis and collective data visualization.


Assuntos
Gráficos por Computador , Imageamento Tridimensional/métodos , Imagem Multimodal/métodos , Algoritmos , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons
4.
IEEE Trans Vis Comput Graph ; 17(12): 2005-14, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22034318

RESUMO

Parameterization of complex surfaces constitutes a major means of visualizing highly convoluted geometric structures as well as other properties associated with the surface. It also enables users with the ability to navigate, orient, and focus on regions of interest within a global view and overcome the occlusions to inner concavities. In this paper, we propose a novel area-preserving surface parameterization method which is rigorous in theory, moderate in computation, yet easily extendable to surfaces of non-disc and closed-boundary topologies. Starting from the distortion induced by an initial parameterization, an area restoring diffeomorphic flow is constructed as a Lie advection of differential 2-forms along the manifold, which yields equality of the area elements between the domain and the original surface at its final state. Existence and uniqueness of result are assured through an analytical derivation. Based upon a triangulated surface representation, we also present an efficient algorithm in line with discrete differential modeling. As an exemplar application, the utilization of this method for the effective visualization of brain cortical imaging modalities is presented. Compared with conformal methods, our method can reveal more subtle surface patterns in a quantitative manner. It, therefore, provides a competitive alternative to the existing parameterization techniques for better surface-based analysis in various scenarios.


Assuntos
Gráficos por Computador , Imageamento Tridimensional/estatística & dados numéricos , Algoritmos , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Tomografia por Emissão de Pósitrons/estatística & dados numéricos
5.
Med Image Comput Comput Assist Interv ; 14(Pt 2): 335-42, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21995046

RESUMO

In this paper, we propose a novel area-preserving surface flattening method, which is rigorous in theory, efficient in computation, yet general in application domains. Leveraged on the state-of-the-art flattening techniques, an infinitesimal area restoring diffeomorphic flow is constructed as a Lie advection of differential 2-forms on the manifold, which yields strict equality of area elements between the flattened and the original surfaces at its final state. With a surface represented by a triangular mesh, we present how an deterministic algorithm can be faithfully implemented to its continuous counterpart. To demonstrate the utility of this method, we have applied our method to both the cortical hemisphere and the entire cortex. Highly complied results are obtained in a matter of seconds.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Encéfalo/patologia , Gráficos por Computador , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos , Reconhecimento Automatizado de Padrão/métodos , Software , Fatores de Tempo
6.
IEEE Trans Vis Comput Graph ; 15(6): 1193-200, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19834189

RESUMO

This paper formalizes a novel, intrinsic geometric scale space (IGSS) of 3D surface shapes. The intrinsic geometry of a surface is diffused by means of the Ricci flow for the generation of a geometric scale space. We rigorously prove that this multiscale shape representation satisfies the axiomatic causality property. Within the theoretical framework, we further present a feature-based shape representation derived from IGSS processing, which is shown to be theoretically plausible and practically effective. By integrating the concept of scale-dependent saliency into the shape description, this representation is not only highly descriptive of the local structures, but also exhibits several desired characteristics of global shape representations, such as being compact, robust to noise and computationally efficient. We demonstrate the capabilities of our approach through salient geometric feature detection and highly discriminative matching of 3D scans.

7.
Med Image Comput Comput Assist Interv ; 10(Pt 1): 367-74, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18051080

RESUMO

Accurate registration of cortical structures plays a fundamental role in statistical analysis of brain images across population. This paper presents a novel framework for the non-rigid intersubject brain surface registration, using conformal structure and spherical thin-plate splines. By resorting to the conformal structure, complete characteristics regarding the intrinsic cortical geometry can be retained as a mean curvature function and a conformal factor function defined on a canonical, spherical domain. In this transformed space, spherical thin-plate splines are firstly used to explicitly match a few prominent homologous landmarks, and in the meanwhile, interpolate a global deformation field. A post-optimization procedure is then employed to further refine the alignment of minor cortical features based on the geometric parameters preserved on the domain. Our experiments demonstrate that the proposed framework is highly competitive with others for brain surface registration and population-based statistical analysis. We have applied our method in the identification of cortical abnormalities in PET imaging of patients with neurological disorders and accurate results are obtained.


Assuntos
Encéfalo/patologia , Epilepsia/patologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Tomografia por Emissão de Pósitrons/métodos , Técnica de Subtração , Algoritmos , Inteligência Artificial , Humanos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Int J Biomed Imaging ; 2007: 13963, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17710251

RESUMO

An important goal of software development in the medical field is the design of methods which are able to integrate information obtained from various imaging and nonimaging modalities into a cohesive framework in order to understand the results of qualitatively different measurements in a larger context. Moreover, it is essential to assess the various features of the data quantitatively so that relationships in anatomical and functional domains between complementing modalities can be expressed mathematically. This paper presents a clinically feasible software environment for the quantitative assessment of the relationship among biochemical functions as assessed by PET imaging and electrophysiological parameters derived from intracranial EEG. Based on the developed software tools, quantitative results obtained from individual modalities can be merged into a data structure allowing a consistent framework for advanced data mining techniques and 3D visualization. Moreover, an effort was made to derive quantitative variables (such as the spatial proximity index, SPI) characterizing the relationship between complementing modalities on a more generic level as a prerequisite for efficient data mining strategies. We describe the implementation of this software environment in twelve children (mean age 5.2 +/- 4.3 years) with medically intractable partial epilepsy who underwent both high-resolution structural MR and functional PET imaging. Our experiments demonstrate that our approach will lead to a better understanding of the mechanisms of epileptogenesis and might ultimately have an impact on treatment. Moreover, our software environment holds promise to be useful in many other neurological disorders, where integration of multimodality data is crucial for a better understanding of the underlying disease mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...