Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38810116

RESUMO

MOTIVATION: Gene regulatory networks (GRNs) encode gene regulation in living organisms, and have become a critical tool to understand complex biological processes. However, due to the dynamic and complex nature of gene regulation, inferring GRNs from scRNA-seq data is still a challenging task. Existing computational methods usually focus on the close connections between genes, and ignore the global structure and distal regulatory relationships. RESULTS: In this study, we develop a supervised deep learning framework, IGEGRNS, to infer GRNs from scRNA-seq data based on graph embedding. In the framework, contextual information of genes is captured by GraphSAGE, which aggregates gene features and neighborhood structures to generate low-dimensional embedding for genes. Then, the k most influential nodes in the whole graph are filtered through Top-k pooling. Finally, potential regulatory relationships between genes are predicted by stacking CNNs. Compared with nine competing supervised and unsupervised methods, our method achieves better performance on six time-series scRNA-seq datasets. AVAILABILITY AND IMPLEMENTATION: Our method IGEGRNS is implemented in Python using the Pytorch machine learning library, and it is freely available at https://github.com/DHUDBlab/IGEGRNS.


Assuntos
Redes Reguladoras de Genes , Análise de Célula Única , Análise de Célula Única/métodos , Biologia Computacional/métodos , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Humanos , Aprendizado Profundo , Algoritmos
2.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930025

RESUMO

Drug combination therapy has gradually become a promising treatment strategy for complex or co-existing diseases. As drug-drug interactions (DDIs) may cause unexpected adverse drug reactions, DDI prediction is an important task in pharmacology and clinical applications. Recently, researchers have proposed several deep learning methods to predict DDIs. However, these methods mainly exploit the chemical or biological features of drugs, which is insufficient and limits the performances of DDI prediction. Here, we propose a new deep multimodal feature fusion framework for DDI prediction, DMFDDI, which fuses drug molecular graph, DDI network and the biochemical similarity features of drugs to predict DDIs. To fully extract drug molecular structure, we introduce an attention-gated graph neural network for capturing the global features of the molecular graph and the local features of each atom. A sparse graph convolution network is introduced to learn the topological structure information of the DDI network. In the multimodal feature fusion module, an attention mechanism is used to efficiently fuse different features. To validate the performance of DMFDDI, we compare it with 10 state-of-the-art methods. The comparison results demonstrate that DMFDDI achieves better performance in DDI prediction. Our method DMFDDI is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/DHUDEBLab/DMFDDI.git.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Interações Medicamentosas , Estrutura Molecular , Biblioteca Gênica
3.
Bioinformatics ; 39(10)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37812255

RESUMO

MOTIVATION: Drug combination therapy has exhibited remarkable therapeutic efficacy and has gradually become a promising clinical treatment strategy of complex diseases such as cancers. As the related databases keep expanding, computational methods based on deep learning model have become powerful tools to predict synergistic drug combinations. However, predicting effective synergistic drug combinations is still a challenge due to the high complexity of drug combinations, the lack of biological interpretability, and the large discrepancy in the response of drug combinations in vivo and in vitro biological systems. RESULTS: Here, we propose DGSSynADR, a new deep learning method based on global structured features of drugs and targets for predicting synergistic anticancer drug combinations. DGSSynADR constructs a heterogeneous graph by integrating the drug-drug, drug-target, protein-protein interactions and multi-omics data, utilizes a low-rank global attention (LRGA) model to perform global weighted aggregation of graph nodes and learn the global structured features of drugs and targets, and then feeds the embedded features into a bilinear predictor to predict the synergy scores of drug combinations in different cancer cell lines. Specifically, LRGA network brings better model generalization ability, and effectively reduces the complexity of graph computation. The bilinear predictor facilitates the dimension transformation of the features and fuses the feature representation of the two drugs to improve the prediction performance. The loss function Smooth L1 effectively avoids gradient explosion, contributing to better model convergence. To validate the performance of DGSSynADR, we compare it with seven competitive methods. The comparison results demonstrate that DGSSynADR achieves better performance. Meanwhile, the prediction of DGSSynADR is validated by previous findings in case studies. Furthermore, detailed ablation studies indicate that the one-hot coding drug feature, LRGA model and bilinear predictor play a key role in improving the prediction performance. AVAILABILITY AND IMPLEMENTATION: DGSSynADR is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/DHUDBlab/DGSSynADR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Humanos , Biologia Computacional/métodos , Combinação de Medicamentos , Neoplasias/tratamento farmacológico , Aprendizado de Máquina
4.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37313714

RESUMO

Single-cell RNA sequencing (scRNA-seq) measures transcriptome-wide gene expression at single-cell resolution. Clustering analysis of scRNA-seq data enables researchers to characterize cell types and states, shedding new light on cell-to-cell heterogeneity in complex tissues. Recently, self-supervised contrastive learning has become a prominent technique for underlying feature representation learning. However, for the noisy, high-dimensional and sparse scRNA-seq data, existing methods still encounter difficulties in capturing the intrinsic patterns and structures of cells, and seldom utilize prior knowledge, resulting in clusters that mismatch with the real situation. To this end, we propose scDECL, a novel deep enhanced constraint clustering algorithm for scRNA-seq data analysis based on contrastive learning and pairwise constraints. Specifically, based on interpolated contrastive learning, a pre-training model is trained to learn the feature embedding, and then perform clustering according to the constructed enhanced pairwise constraint. In the pre-training stage, a mixup data augmentation strategy and interpolation loss is introduced to improve the diversity of the dataset and the robustness of the model. In the clustering stage, the prior information is converted into enhanced pairwise constraints to guide the clustering. To validate the performance of scDECL, we compare it with six state-of-the-art algorithms on six real scRNA-seq datasets. The experimental results demonstrate the proposed algorithm outperforms the six competing methods. In addition, the ablation studies on each module of the algorithm indicate that these modules are complementary to each other and effective in improving the performance of the proposed algorithm. Our method scDECL is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/DBLABDHU/scDECL.


Assuntos
Perfilação da Expressão Gênica , Análise da Expressão Gênica de Célula Única , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Análise por Conglomerados
5.
Entropy (Basel) ; 24(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36141099

RESUMO

Network data analysis is a crucial method for mining complicated object interactions. In recent years, random walk and neural-language-model-based network representation learning (NRL) approaches have been widely used for network data analysis. However, these NRL approaches suffer from the following deficiencies: firstly, because the random walk procedure is based on symmetric node similarity and fixed probability distribution, the sampled vertices' sequences may lose local community structure information; secondly, because the feature extraction capacity of the shallow neural language model is limited, they can only extract the local structural features of networks; and thirdly, these approaches require specially designed mechanisms for different downstream tasks to integrate vertex attributes of various types. We conducted an in-depth investigation to address the aforementioned issues and propose a novel general NRL framework called dynamic structure and vertex attribute fusion network embedding, which firstly defines an asymmetric similarity and h-hop dynamic random walk strategy to guide the random walk process to preserve the network's local community structure in walked vertex sequences. Next, we train a self-attention-based sequence prediction model on the walked vertex sequences to simultaneously learn the vertices' local and global structural features. Finally, we introduce an attributes-driven Laplacian space optimization to converge the process of structural feature extraction and attribute feature extraction. The proposed approach is exhaustively evaluated by means of node visualization and classification on multiple benchmark datasets, and achieves superior results compared to baseline approaches.

6.
Entropy (Basel) ; 24(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35885189

RESUMO

Domain adaptation aims to learn a classifier for a target domain task by using related labeled data from the source domain. Because source domain data and target domain task may be mismatched, there is an uncertainty of source domain data with respect to the target domain task. Ignoring the uncertainty may lead to models with unreliable and suboptimal classification results for the target domain task. However, most previous works focus on reducing the gap in data distribution between the source and target domains. They do not consider the uncertainty of source domain data about the target domain task and cannot apply the uncertainty to learn an adaptive classifier. Aimed at this problem, we revisit the domain adaptation from source domain data uncertainty based on evidence theory and thereby devise an adaptive classifier with the uncertainty measure. Based on evidence theory, we first design an evidence net to estimate the uncertainty of source domain data about the target domain task. Second, we design a general loss function with the uncertainty measure for the adaptive classifier and extend the loss function to support vector machine. Finally, numerical experiments on simulation datasets and real-world applications are given to comprehensively demonstrate the effectiveness of the adaptive classifier with the uncertainty measure.

7.
Front Oncol ; 12: 899825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692809

RESUMO

Accurate inference of gene regulatory rules is critical to understanding cellular processes. Existing computational methods usually decompose the inference of gene regulatory networks (GRNs) into multiple subproblems, rather than detecting potential causal relationships simultaneously, which limits the application to data with a small number of genes. Here, we propose BiRGRN, a novel computational algorithm for inferring GRNs from time-series single-cell RNA-seq (scRNA-seq) data. BiRGRN utilizes a bidirectional recurrent neural network to infer GRNs. The recurrent neural network is a complex deep neural network that can capture complex, non-linear, and dynamic relationships among variables. It maps neurons to genes, and maps the connections between neural network layers to the regulatory relationship between genes, providing an intuitive solution to model GRNs with biological closeness and mathematical flexibility. Based on the deep network, we transform the inference of GRNs into a regression problem, using the gene expression data at previous time points to predict the gene expression data at the later time point. Furthermore, we adopt two strategies to improve the accuracy and stability of the algorithm. Specifically, we utilize a bidirectional structure to integrate the forward and reverse inference results and exploit an incomplete set of prior knowledge to filter out some candidate inferences of low confidence. BiRGRN is applied to four simulated datasets and three real scRNA-seq datasets to verify the proposed method. We perform comprehensive comparisons between our proposed method with other state-of-the-art techniques. These experimental results indicate that BiRGRN is capable of inferring GRN simultaneously from time-series scRNA-seq data. Our method BiRGRN is implemented in Python using the TensorFlow machine-learning library, and it is freely available at https://gitee.com/DHUDBLab/bi-rgrn.

8.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35696651

RESUMO

The development of single-cell RNA-seq (scRNA-seq) technology allows researchers to characterize the cell types, states and transitions during dynamic biological processes at single-cell resolution. One of the critical tasks is to infer pseudo-time trajectory. However, the existence of transition cells in the intermediate state of complex biological processes poses a challenge for the trajectory inference. Here, we propose a new single-cell trajectory inference method based on transition entropy, named scTite, to identify transitional states and reconstruct cell trajectory from scRNA-seq data. Taking into account the continuity of cellular processes, we introduce a new metric called transition entropy to measure the uncertainty of a cell belonging to different cell clusters, and then identify cell states and transition cells. Specifically, we adopt different strategies to infer the trajectory for the identified cell states and transition cells, and combine them to obtain a detailed cell trajectory. For the identified cell clusters, we utilize the Wasserstein distance based on the probability distribution to calculate distance between clusters, and construct the minimum spanning tree. Meanwhile, we adopt the signaling entropy and partial correlation coefficient to determine transition paths, which contain a group of transition cells with the largest similarity. Then the transitional paths and the MST are combined to infer a refined cell trajectory. We apply scTite to four real scRNA-seq datasets and an integrated dataset, and conduct extensive performance comparison with nine existing trajectory inference methods. The experimental results demonstrate that the proposed method can reconstruct the cell trajectory more accurately than the compared algorithms. The scTite software package is available at https://github.com/dblab2022/scTite.


Assuntos
Análise de Célula Única , Transcriptoma , Entropia , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Software
9.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35172334

RESUMO

Single-cell RNA sequencing (scRNA-seq) permits researchers to study the complex mechanisms of cell heterogeneity and diversity. Unsupervised clustering is of central importance for the analysis of the scRNA-seq data, as it can be used to identify putative cell types. However, due to noise impacts, high dimensionality and pervasive dropout events, clustering analysis of scRNA-seq data remains a computational challenge. Here, we propose a new deep structural clustering method for scRNA-seq data, named scDSC, which integrate the structural information into deep clustering of single cells. The proposed scDSC consists of a Zero-Inflated Negative Binomial (ZINB) model-based autoencoder, a graph neural network (GNN) module and a mutual-supervised module. To learn the data representation from the sparse and zero-inflated scRNA-seq data, we add a ZINB model to the basic autoencoder. The GNN module is introduced to capture the structural information among cells. By joining the ZINB-based autoencoder with the GNN module, the model transfers the data representation learned by autoencoder to the corresponding GNN layer. Furthermore, we adopt a mutual supervised strategy to unify these two different deep neural architectures and to guide the clustering task. Extensive experimental results on six real scRNA-seq datasets demonstrate that scDSC outperforms state-of-the-art methods in terms of clustering accuracy and scalability. Our method scDSC is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/DHUDBlab/scDSC.


Assuntos
Redes Neurais de Computação , Análise de Célula Única , Análise por Conglomerados , Perfilação da Expressão Gênica , RNA-Seq , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
10.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 2512-2522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33630737

RESUMO

Cellular programs often exhibit strong heterogeneity and asynchrony in the timing of program execution. Single-cell RNA-seq technology has provided an unprecedented opportunity for characterizing these cellular processes by simultaneously quantifying many parameters at single-cell resolution. Robust trajectory inference is a critical step in the analysis of dynamic temporal gene expression, which can shed light on the mechanisms of normal development and diseases. Here, we present TiC2D, a novel algorithm for cell trajectory inference from single-cell RNA-seq data, which adopts a consensus clustering strategy to precisely cluster cells. To evaluate the power of TiC2D, we compare it with three state-of-the-art methods on four independent single-cell RNA-seq datasets. The results show that TiC2D can accurately infer developmental trajectories from single-cell transcriptome. Furthermore, the reconstructed trajectories enable us to identify key genes involved in cell fate determination and to obtain new insights about their roles at different developmental stages.


Assuntos
Algoritmos , Análise de Célula Única , Análise por Conglomerados , Consenso , Perfilação da Expressão Gênica/métodos , RNA-Seq , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
11.
Comput Biol Chem ; 93: 107512, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34044202

RESUMO

Gene regulatory network models the interactions between transcription factors and target genes. Reconstructing gene regulation network is critically important to understand gene function in a particular cellular context, providing key insights into complex biological systems. We develop a new computational method, named iMPRN, which integrates multiple prior networks to infer regulatory network. Based on the network component analysis model, iMPRN adopts linear regression, graph embedding, and elastic networks to optimize each prior network in line with specific biological context. For each rewired prior networks, iMPRN evaluate the confidence of the regulatory edges in each network based on B scores and finally integrated these optimized networks. We validate the effectiveness of iMPRN by comparing it with four widely-used gene regulatory network reconstruction algorithms on a simulation data set. The results show that iMPRN can infer the gene regulatory network more accurately. Further, on a real scRNA-seq dataset, iMPRN is respectively applied to reconstruct gene regulatory networks for malignant and nonmalignant head and neck tumor cells, demonstrating distinctive differences in their corresponding regulatory networks.


Assuntos
Redes Reguladoras de Genes , Análise de Célula Única , Humanos , Transcriptoma
12.
Front Cell Dev Biol ; 8: 588041, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195248

RESUMO

A complex tissue contains a variety of cells with distinct molecular signatures. Single-cell RNA sequencing has characterized the transcriptomes of different cell types and enables researchers to discover the underlying mechanisms of cellular heterogeneity. A critical task in single-cell transcriptome studies is to uncover transcriptional differences among specific cell types. However, the intercellular transcriptional variation is usually confounded with high level of technical noise, which masks the important biological signals. Here, we propose a new computational method DiffGE for differential analysis, adopting network entropy to measure the expression dynamics of gene groups among different cell types and to identify the highly differential gene groups. To evaluate the effectiveness of our proposed method, DiffGE is applied to three independent single-cell RNA-seq datasets and to identify the highly dynamic gene groups that exhibit distinctive expression patterns in different cell types. We compare the results of our method with those of three widely applied algorithms. Further, the gene function analysis indicates that these detected differential gene groups are significantly related to cellular regulation processes. The results demonstrate the power of our method in evaluating the transcriptional dynamics and identifying highly differential gene groups among different cell types.

13.
BMC Genomics ; 20(Suppl 2): 221, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30967107

RESUMO

BACKGROUND: Epigenome is highly dynamic during the early stages of embryonic development. Epigenetic modifications provide the necessary regulation for lineage specification and enable the maintenance of cellular identity. Given the rapid accumulation of genome-wide epigenomic modification maps across cellular differentiation process, there is an urgent need to characterize epigenetic dynamics and reveal their impacts on differential gene regulation. METHODS: We proposed DiffEM, a computational method for differential analysis of epigenetic modifications and identified highly dynamic modification sites along cellular differentiation process. We applied this approach to investigating 6 epigenetic marks of 20 kinds of human early developmental stages and tissues, including hESCs, 4 hESC-derived lineages and 15 human primary tissues. RESULTS: We identified highly dynamic modification sites where different cell types exhibit distinctive modification patterns, and found that these highly dynamic sites enriched in the genes related to cellular development and differentiation. Further, to evaluate the effectiveness of our method, we correlated the dynamics scores of epigenetic modifications with the variance of gene expression, and compared the results of our method with those of the existing algorithms. The comparison results demonstrate the power of our method in evaluating the epigenetic dynamics and identifying highly dynamic regions along cell differentiation process.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigenômica , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Diferenciação Celular , Histonas/genética , Histonas/metabolismo , Humanos , Especificidade de Órgãos
14.
Front Genet ; 10: 1298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010182

RESUMO

Epigenetic alteration is a fundamental characteristic of nearly all human cancers. Tumor cells not only harbor genetic alterations, but also are regulated by diverse epigenetic modifications. Identification of epigenetic similarities across different cancer types is beneficial for the discovery of treatments that can be extended to different cancers. Nowadays, abundant epigenetic modification profiles have provided a great opportunity to achieve this goal. Here, we proposed a new approach TriPCE, introducing tri-clustering strategy to integrative pan-cancer epigenomic analysis. The method is able to identify coherent patterns of various epigenetic modifications across different cancer types. To validate its capability, we applied the proposed TriPCE to analyze six important epigenetic marks among seven cancer types, and identified significant cross-cancer epigenetic similarities. These results suggest that specific epigenetic patterns indeed exist among these investigated cancers. Furthermore, the gene functional analysis performed on the associated gene sets demonstrates strong relevance with cancer development and reveals consistent risk tendency among these investigated cancer types.

15.
BMC Med Genomics ; 11(Suppl 6): 117, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30598115

RESUMO

BACKGROUND: Human cancers are complex ecosystems composed of cells with distinct molecular signatures. Such intratumoral heterogeneity poses a major challenge to cancer diagnosis and treatment. Recent advancements of single-cell techniques such as scRNA-seq have brought unprecedented insights into cellular heterogeneity. Subsequently, a challenging computational problem is to cluster high dimensional noisy datasets with substantially fewer cells than the number of genes. METHODS: In this paper, we introduced a consensus clustering framework conCluster, for cancer subtype identification from single-cell RNA-seq data. Using an ensemble strategy, conCluster fuses multiple basic partitions to consensus clusters. RESULTS: Applied to real cancer scRNA-seq datasets, conCluster can more accurately detect cancer subtypes than the widely used scRNA-seq clustering methods. Further, we conducted co-expression network analysis for the identified melanoma subtypes. CONCLUSIONS: Our analysis demonstrates that these subtypes exhibit distinct gene co-expression networks and significant gene sets with different functional enrichment.


Assuntos
Neoplasias/classificação , RNA Neoplásico , Análise por Conglomerados , Conjuntos de Dados como Assunto , Humanos , Dados de Sequência Molecular , Neoplasias/genética
16.
BMC Bioinformatics ; 17(Suppl 17): 537, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28155634

RESUMO

BACKGROUND: Differentiation of human embryonic stem cells requires precise control of gene expression that depends on specific spatial and temporal epigenetic regulation. Recently available temporal epigenomic data derived from cellular differentiation processes provides an unprecedented opportunity for characterizing fundamental properties of epigenomic dynamics and revealing regulatory roles of epigenetic modifications. RESULTS: This paper presents a spatial temporal clustering approach, named STCluster, which exploits the temporal variation information of epigenomes to characterize dynamic epigenetic mode during cellular differentiation. This approach identifies significant spatial temporal patterns of epigenetic modifications along human embryonic stem cell differentiation and cluster regulatory sequences by their spatial temporal epigenetic patterns. CONCLUSIONS: The results show that this approach is effective in capturing epigenetic modification patterns associated with specific cell types. In addition, STCluster allows straightforward identification of coherent epigenetic modes in multiple cell types, indicating the ability in the establishment of the most conserved epigenetic signatures during cellular differentiation process.


Assuntos
Diferenciação Celular/genética , Análise por Conglomerados , Células-Tronco Embrionárias/fisiologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Humanos
17.
Artigo em Inglês | MEDLINE | ID: mdl-26356334

RESUMO

Nucleosomes are basic elements of chromatin structure. The positioning of nucleosomes along a genome is very important to dictate eukaryotic DNA compaction and access. Current computational methods have focused on the analysis of nucleosome occupancy and the positioning of well-positioned nucleosomes. However, fuzzy nucleosomes require more complex configurations and are more difficult to predict their positions. We analyzed the positioning of well-positioned and fuzzy nucleosomes from a novel structural perspective, and proposed WaveNuc, a computational approach for inferring their positions based on continuous wavelet transformation. The comparative analysis demonstrates that these two kinds of nucleosomes exhibit different propeller twist structural characteristics. Well-positioned nucleosomes tend to locate at sharp peaks of the propeller twist profile, whereas fuzzy nucleosomes correspond to broader peaks. The sharpness of these peaks shows that the propeller twist profile may contain nucleosome positioning information. Exploiting this knowledge, we applied WaveNuc to detect the two different kinds of peaks of the propeller twist profile along the genome. We compared the performance of our method with existing methods on real data sets. The results show that the proposed method can accurately resolve complex configurations of fuzzy nucleosomes, which leads to better performance of nucleosome positioning prediction on the whole genome.


Assuntos
Biologia Computacional/métodos , DNA/ultraestrutura , Nucleossomos/ultraestrutura , Análise de Ondaletas , Modelos Genéticos , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...