Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol ; 261(3): 269-285, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37602503

RESUMO

As an essential factor in the prognosis of systemic lupus erythematosus (SLE), lupus nephritis (LN) can accelerate the rate at which patients with SLE can transition to chronic kidney disease or even end-stage renal disease. Podocytes now appear to be a possible direct target in LN in addition to being prone to collateral damage from glomerular capillary lesions induces by immune complexes and inflammatory processes. The NLRP3 inflammasome is regulated by CCAAT/enhancer-binding protein ß (C/EBPß), which is involved in the pathogenesis of SLE. However, the role and mechanism of C/EBPß in LN remain unclear. In this investigation, glomerular podocytes treated with LN serum and MRL/lpr mice were employed as in vivo and in vitro models of LN, respectively. In vivo, the expression of C/EBPß isoforms was detected in kidney specimens of humans and mice with LN. Then we assessed the effect of C/EBPß inhibition on renal structure and function by injecting RNAi adeno-associated virus of C/EBPß shRNA into MRL/lpr mice. In vitro, glomerular podocytes were treated with LN serum and C/EBPß siRNA to explore the role of C/EBPß in the activation of the AIM2 inflammasome and podocyte injury. C/EBPß-LAP and C/EBPß-LIP were significantly overexpressed in kidney tissue samples from LN patients and mice, and C/EBPß inhibition significantly alleviated renal function damage and ameliorated renal structural deficiencies. Inflammatory pathways downstream from the AIM2 inflammasome could be suppressed by C/EBPß knockdown. Furthermore, the upregulation of C/EBPß-LAP could activate the AIM2 inflammasome and podocyte pyroptosis by binding to the promoters of AIM2 and CASPASE1 to enhance their expression, and the knockdown of AIM2 or (and) caspase-1 reversed the effects of C/EBPß-LAP overexpression. Interestingly, C/EBPß-LIP overexpression could transcriptionally inhibit IRAG and promote Ca2+ release-mediated activation of the AIM2 inflammasome. This finding suggests that C/EBPß is not only involved in the regulation of the expression of key proteins of the AIM2 inflammasome but also affects the polymerization of key proteins of the AIM2 inflammasome through the regulation of Ca2+ release. In conclusion, this study provides a new idea for studying the regulatory mechanism of C/EBPß and provides a theoretical basis for the early diagnosis and treatment of LN in the future. © 2023 The Pathological Society of Great Britain and Ireland.

2.
J Mol Histol ; 54(4): 313-327, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37341818

RESUMO

As an essential factor in the prognosis of Systemic lupus erythematosus (SLE), lupus nephritis (LN) can accelerate the rate at which patients with SLE can transition to chronic kidney disease or even end-stage renal disease (ESRD). Proteinuria due to decreased glomerular filtration rate following podocyte injury is LN's most common clinical manifestation. Podocyte pyroptosis and related inflammatory factors in its process can promote lupus to involve kidney cells and worsen the occurrence and progression of LN, but its regulatory mechanism remains unknown. Accumulating evidence has shown that upstream stimulatory factor 2 (USF2) plays a vital role in the pathophysiology of kidney diseases. In this research, multiple experiments were performed to investigate the role of USF2 in the process of LN. USF2 was abnormally highly expressed in MRL/lpr mice kidney tissues. Renal function impairment and USF2 mRNA levels were positively correlated. Silencing of USF2 in MRL/lpr serum-stimulated cells significantly reduced serum-induced podocyte pyroptosis. USF2 enhanced NLRP3 expression at the transcriptional level. Silencing of USF2 in vivo attenuated kidney injury in MRL/lpr mice, which suggests that USF2 is important for LN development and occurrence.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Podócitos , Animais , Camundongos , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Podócitos/metabolismo , Piroptose , Fatores Estimuladores Upstream/metabolismo , Camundongos Endogâmicos MRL lpr , Rim/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo
3.
Hum Cell ; 36(3): 1024-1040, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828974

RESUMO

Renal interstitial fibrosis (RIF) is a common pathological hallmark of progressive chronic kidney disease (CKD). Circular RNAs (circRNAs) are involved in certain renal diseases, but their role in RIF is largely unknown. The present study investigated the effects and potential mechanisms of circRNA_0017076 in RIF. CircRNA_0017076 expression was markedly upregulated in transforming growth factor-ß1 (TGF-ß1)-treated renal tubular epithelial cells (RTECs) and kidney biopsy samples from patients with RIF. Functional assays showed that circRNA_0017076 colocalized with microRNA-185-5p (miR-185-5p) and inhibited miR-185-5p function via direct binding to miR-185-5p. In vitro, the knockdown of circRNA_0017076 inhibited the calcium ion (Ca2+) influx-mediated epithelial-to-mesenchymal transition (EMT) of RTECs and downregulated the expression of stromal interaction molecule 1 (STIM1), which is a target protein of miR-185-5p. Silencing mmu_circ_0004488 reduced fibrotic lesions in the kidneys of unilateral ureteral obstruction (UUO) mice by targeting the miR-185-5p/Stim1 axis. For the first time, we identified circRNA_0017076 as a sponge for miR-185-5p, which regulates STIM1 gene expression and is involved in RIF. Our results support circRNA_0017076 as a potential therapeutic target for RIF disease.


Assuntos
MicroRNAs , Insuficiência Renal Crônica , Camundongos , Animais , RNA Circular/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Insuficiência Renal Crônica/patologia , Fibrose , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
4.
Exp Cell Res ; 408(1): 112856, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597680

RESUMO

Renal interstitial fibrosis (RIF) is the common irreversible pathway by which chronic kidney disease (CKD) progresses to the end stage. The transforming growth factor-ß (TGF-ß)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is a common factor leading to inflammation-mediated RIF, but its downstream regulatory mechanism is still unclear. Bioinformatics analysis predicted that serum amyloid A protein 1 (SAA1) was one of the target genes for transcriptional activation of STAT3 signaling. As an acute phase reaction protein, SAA1 plays an important role in many inflammatory reactions, and research has suggested that SAA1 is significantly elevated in the serum of patients with CKD. In this research, multiple experiments were performed to investigate the role of SAA1 in the process of RIF. SAA1 was abnormally highly expressed in kidney tissue from individuals who underwent unilateral ureteral obstruction (UUO) and TGF-ß-induced HK2 cells, and the abnormal expression was directly related to the transcriptional activation of STAT3. Additionally, SAA1 can directly target and bind valosin-containing protein (VCP)-interacting membrane selenoprotein (VIMP) to inhibit the function of the Derlin-1/VCP/VIMP complex, preventing the transportation and degradation of the misfolded protein, resulting in endoplasmic reticulum (ER) stress characterized by an increase in glucose-regulated protein 78 (GRP78) levels and ultimately promoting the occurrence and development of RIF.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Fibrose/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Chaperona BiP do Retículo Endoplasmático , Fibrose/patologia , Humanos , Inflamação/metabolismo , Camundongos , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais/fisiologia , Obstrução Ureteral/metabolismo
5.
Pathobiology ; 88(6): 412-423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34344015

RESUMO

OBJECTIVE: The goal of the present study was to determine the expression of yes-associated protein 1 (YAP1) in renal tissues of mice with lupus nephritis (LN) and elucidate its role in the progression of renal fibrosis. METHODS: C57BL/6 mice and MRL/lpr mice were selected for experimental comparison. Mouse kidney tissues were removed and sectioned for hematoxylin and eosin staining, Masson's trichome staining, Sirius staining, and immunohistochemistry. The mRNA and protein levels of YAP1 in mouse kidney tissues were detected, and the correlation between YAP1 and fibronectin (FN) mRNA levels was analyzed. Mouse renal epithelial cells were used for in vitro experiments. After transfection and stimulation, the cells were divided into 4 groups, namely the C57BL/6 serum group (group 1), the MRL/lpr serum group (group 2), the MRL/lpr serum + siRNA-negative control group (group 3), and the MRL/lpr serum + siRNA-YAP1 group (group 4). Epithelial-mesenchymal transition (EMT) markers in each group were detected by Western blotting and immunofluorescence staining. Serum creatinine, blood urea nitrogen, and urinary protein levels were detected and assessed for their correlation with YAP1 mRNA levels by Spearman's analysis. RESULTS: Compared to C57BL/6 mice, MRL/lpr mice exhibited obvious changes in fibrosis in renal tissues. In addition, YAP1 expression was significantly higher in the renal tissues of MRL/lpr mice than in those of C57BL/6 mice, and YAP1 mRNA levels were positively correlated with those of FN. YAP1 silencing in lupus serum-stimulated cells could effectively relieve serum-induced EMT. Finally, we observed that YAP1 mRNA levels in mouse kidney tissue were significantly and positively correlated with the degree of renal function injury. CONCLUSION: YAP1 expression in the kidney tissues of LN mice was higher than that observed in normal mice, indicating that YAP1 may play an important role in the occurrence and development of LN.


Assuntos
Nefrite Lúpica , Animais , Fibrose , Rim/patologia , Nefrite Lúpica/genética , Nefrite Lúpica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr
6.
Cell Signal ; 36: 67-78, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28455144

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is known to activate targets associated with invasion, proliferation, and angiogenesis in a wide variety of cancers. The adaptor protein NCK1 is involved in cytoskeletal movement and was identified as a STAT3-associated target in human tumors. However, the underlying molecular mechanism associated with colorectal cancer (CRC) metastasis is not yet completely understood. In this study, we report a novel STAT3 to NCK1 signaling pathway in colorectal cancer (CRC). We investigated the expression of NCK1 and its potential clinical and biological significance in CRC. NCK1 was noticeably up-regulated in human CRC tissues. NCK1 was also significantly associated with serosal invasion, lymph metastasis, and tumor-node-metastasis classification but was inversely correlated with differentiation. Gain-of-function and loss-of-function studies have shown that ectopic expression of NCK1 enhanced metastasis and angiogenesis in CRC cells. By gene expression analyses, we revealed a high co-overexpression of STAT3 and NCK1 in CRC tissues. Ectopic overexpression of STAT3 in CRC cells induced the expression of NCK1, whereas STAT3 knockdown decreased the expression of NCK1. Promoter activation and binding analyses demonstrated that STAT3 promoted the expression of NCK1 via direct action on the NCK1 promoter. The knock down of NCK1 partially reduced the CRC cell metastasis and angiogenesis promoted by STAT3. Additionally, by co-immunoprecipitation assays, we verified that NCK1 interacted with PAK1, which resulted in the activation of the PAK1/ERK pathway. STAT3 induced the transcription of NCK1 and triggered a PAK1/ERK cascade in CRC. These findings suggest a novel STAT3 to NCK1 to PAK1/ERK signaling mechanism that is potentially critical for CRC metastasis and angiogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/patologia , Metástase Linfática/patologia , Neovascularização Patológica/metabolismo , Proteínas Oncogênicas/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Movimento Celular , Galinhas , Neoplasias Colorretais/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Quinase 2 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Proteínas Oncogênicas/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...