Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Med ; 18(1): 135, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848944

RESUMO

BACKGROUND: Circulation dysfunction is a major contributing factor to thrombosis in patients with atrial fibrillation (AF) for which effective interventions are lacking. Growing evidence indicates that regulating the paraventricular nucleus (PVN), an autonomic control center, could offer a novel strategy for treating cardiovascular and circulatory diseases. Concurrently, electroacupuncture (EA) at Xinshu (BL15), a form of peripheral nerve stimulation, has shown efficacy in treating several cardiovascular conditions, although its specific mechanism remains unclear. This study aimed to assess the impact of EA at BL15 on circulatory dysfunction in a rat AF model and investigate the pivotal role of PVN neuronal activity. METHODS: To mimic the onset of AF, male SD rats received tail intravenous injection of ACh-CaCl2 and were then subjected to EA at BL15, sham EA, or EA at Shenshu (BL23). Macro- and micro-circulation function were evaluated using in vivo ultrasound imaging and laser doppler testing, respectively. Vasomotricity was assessed by measuring dimension changes during vascular relaxation and contraction. Vascular endothelial function was measured using myograph, and the activation of the autonomic nerve system was evaluated through nerve activity signals. Additionally, chemogenetic manipulation was used to block PVN neuronal activation to further elucidate the role of PVN activation in the prevention of AF-induced blood circulation dysfunction through EA treatment. RESULTS: Our data demonstrate that EA at BL15, but not BL23 or sham EA, effectively prevented AF-induced macro- and micro-circulation dysfunction. Furthermore, EA at BL15 restored AF-induced vasomotricity impairment. Additionally, EA treatment prevented abnormal activation of the autonomic nerve system induced by AF, although it did not address vascular endothelial dysfunction. Importantly, excessive activation of PVN neurons negated the protective effects of EA treatment on AF-induced circulation dysfunction in rats. CONCLUSION: These results indicate that EA treatment at BL15 modulates PVN neuronal activity and provides protection against AF-induced circulatory dysfunction.

2.
Neuromodulation ; 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36522251

RESUMO

OBJECTIVES: Autonomic nervous activity imbalance plays an important role in atrial fibrillation (AF). AF can be treated by acupuncture at the Neiguan point (PC6), but the mechanism remains elusive. Here, we investigated autonomic nervous system activity in electroacupuncture (EA) at PC6 in a rat AF model. MATERIAL AND METHODS: In this study, we established a rat AF model via tail vein injection with ACh-CaCl2 for ten consecutive days with or without EA at PC6. AF inducibility and heart rate variability (HRV) were assessed by electrocardiogram. Next, we completed in vivo recording of the activity of cervical sympathetic and vagal nerves, respectively. Finally, the activities of brain regions related to autonomic nerve regulation were assessed by c-Fos immunofluorescence and multichannel recording. RESULTS: EA at PC6 decreased AF inducibility and prevented changes in HRV caused by ACh-CaCl2 injection. Meanwhile, EA at PC6 reversed the increased sympathetic and decreased vagal nerve activity in AF rats. Furthermore, EA treatment downregulated increased c-Fos expression in brain regions, including paraventricular nucleus, rostral ventrolateral medulla, and dorsal motor nucleus of the vagus in AF, while c-Fos expression in nucleus ambiguus was upregulated with EA. CONCLUSION: The protective effect of EA at PC6 on AF is associated with balance between sympathetic and vagal nerve activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...