Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Nanotechnol ; 17(1): 78-89, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653498

RESUMO

Currently chemotherapy drugs are usually used as first-line treatments for castration-resistant prostate cancer (CRPC), but they are ineffective and accompanied by serious side effects. MicroRNA-34a (miR-34a) simultaneously targets multiple genes related to the cell apoptosis in CRPC cells without obvious side effects. It has shown great potential in the treatment of CRPC. Previous studies focused on miR-34a increasing the sensitivity of chemotherapy drugs to chemoresistant prostate cancer cells. There are few researches on miR-34a alone in the treatment of CRPC. But the macromolecular miR-34a is difficult to enter the cell and is easily degraded by nuclease. Therefore, we constructed methoxy polyethylene glycol-polylacticco-glycolic acid-polylysine (mPEG-PLGA-PLL) nanoparticles to encapsulate miR-34a (miR-34a/NP). The results showed that miR-34a/NP protects miR-34a from degradation by nucleases and can be phagocytized by PC-3 CRPC cells. Ultrasound induces microbubble cavitation (UIMC) improves cell membrane permeability and capillary gaps, and further promotes miR-34a/NP to enter cells PC-3 and prostate cancer xenografts. The miR-34a/NP that enters the cell and tumor tissue releases miR-34a, which suppressed CRPC cells PC-3 proliferation, promoted its apoptosis, and inhibited the growth of CRPC xenografts. Our research verified that miR-34a/NP, especially combined with UIMC, has a significant anti-tumor effect on CRPC.


Assuntos
MicroRNAs , Nanopartículas , Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Microbolhas , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética
2.
Front Pharmacol ; 10: 1651, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32116672

RESUMO

The flow fields generated by the acoustic behavior of microbubbles can significantly increase cell permeability. This facilitates the cellular uptake of external molecules in a process known as ultrasound-mediated drug delivery. To promote its clinical translation, this study investigated the relationships among the ultrasound parameters, acoustic behavior of microbubbles, flow fields, and delivery results. SonoVue microbubbles were activated by 1 MHz pulsed ultrasound with 100 Hz pulse repetition frequency, 1:5 duty cycle, and 0.20/0.35/0.70 MPa peak rarefactional pressure. Micro-particle image velocimetry was used to detect the microbubble behavior and the resulting flow fields. Then HeLa human cervical cancer cells were treated with the same conditions for 2, 4, 10, 30, and 60 s, respectively. Fluorescein isothiocyanate and propidium iodide were used to quantitate the rates of sonoporated cells with a flow cytometer. The results indicate that (1) microbubbles exhibited different behavior in ultrasound fields of different peak rarefactional pressures. At peak rarefactional pressures of 0.20 and 0.35 MPa, the dispersed microbubbles clumped together into clusters, and the clusters showed no apparent movement. At a peak rarefactional pressure of 0.70 MPa, the microbubbles were partially broken, and the remainders underwent clustering and coalescence to form bubble clusters that exhibited translational oscillation. (2) The flow fields were unsteady before the unification of the microbubbles. After that, the flow fields showed a clear pattern. (3)The delivery efficiency improved with the shear stress of the flow fields increased. Before the formation of the microbubble/bubble cluster, the maximum shear stresses of the 0.20, 0.35, and 0.70 MPa groups were 56.0, 87.5 and 406.4 mPa, respectively, and the rates of the reversibly sonoporated cells were 2.4% ± 0.4%, 5.5% ± 1.3%, and 16.6% ± 0.2%. After the cluster formation, the maximum shear stresses of the three groups were 9.1, 8.7, and 71.7 mPa, respectively. The former two could not mediate sonoporation, whereas the last one could. These findings demonstrate the critical role of flow fields in ultrasound-mediated drug delivery and contribute to its clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...