Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 673, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909040

RESUMO

Most phloem-feeding insects face nutritional deficiency and rely on their intracellular symbionts to provide nutrients, and most of endosymbiont genomes have undergone reduction. However, the study of genome reduction processes of endosymbionts has been constrained by the limited availability of genome data from different insect lineages. The obligate relationship between aphids and Buchnera aphidicola (hereafter Buchnera) makes them a classic model for studying insect-endosymbiont interaction. Here, we report 29 newly sequenced Buchnera genomes from 11 aphid subfamilies, and a comprehensive dataset based on 90 Buchnera genomes from 14 aphid subfamilies. The dataset shows a significant genomic difference of Buchnera among different aphid lineages. The dataset exhibits a more balanced distribution of Buchnera (from 14 aphid subfamilies) genome sizes, ranging from 400 kb to 600 kb, which can illustrate the genome reduction process of Buchnera. The new genome data provide valuable insights into the microevolutionary processes leading to genomic reduction of insect endosymbionts.


Assuntos
Afídeos , Buchnera , Genoma Bacteriano , Simbiose , Animais , Afídeos/microbiologia , Buchnera/genética , Tamanho do Genoma , Filogenia
2.
Animals (Basel) ; 12(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35953959

RESUMO

The complete mitochondrial genomes and their rearrangement patterns can provide useful information for inferring evolutionary history of organisms. Aphids are one of the insect groups with some unique mitogenome features. In this study, to examine whether some features in aphid mitogenomes are independent species-specific evolutionary events or clade-specific events at certain taxonomic levels, we sequenced three new aphid mitogenomes (Hormaphidinae: Ceratovacuna keduensis, Pseudoregma panicola; Lachninae: Nippolachnus piri) and compared them with all known aphid mitogenomes. The three mitogenomes are 16,059-17,033 bp in length, with a set of 37 typical mitochondrial genes, a non-coding control region and a tandem repeat region. The gene orders of them are all highly rearranged. Within the subfamily Hormaphidinae, the presence of repeat region and mitogenome rearrangement in Cerataphidini species but not in the other two tribes indicate that these may be Cerataphidini-specific features. The same gene rearrangement pattern in the two Lachninae species, N. piri (Tuberolachnini) and Stomaphis sinisalicis (Stomaphidini), supports that this feature should be at least derived from the common ancestor of two tribes. Overall, our data and analyses provide new insights into the evolutionary patterns of gene rearrangement and repeat region in aphid mitogenomes, and further corroborate the potential role of gene rearrangement in elucidating the evolutionary history of different insect lineages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...