Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Adv Mater ; : e2402219, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843883

RESUMO

Monolayer WTe2 has attracted significant attention for its unconventional superconductivity and topological edge states. However, its air sensitivity poses challenges for studying intrinsic defect structures. This study addresses this issue using a custom-built inert gas interconnected system, and investigate the intrinsic grain boundary (GB) structures of monolayer polycrystalline 1T' WTe2 grown by nucleation-controlled chemical vapor deposition (CVD) method. These findings reveal that GBs in this system are predominantly governed by W-Te rhombi with saturated coordination, resulting in three specific GB prototypes without dislocation cores. The GBs exhibit anisotropic orientations influenced by kinks formed from these fundamental units, which in turn affect the distribution of grains in various shapes within polycrystalline flakes. Scanning tunneling microscopy/spectroscopy (STM/S) analysis further reveals metallic states along the intrinsic 120° twin grain boundary (TGB), consistent with computed band structures. This systematic exploration of GBs in air-sensitive 1T' WTe2 monolayers provides valuable insights into emerging GB-related phenomena.

2.
Nat Commun ; 15(1): 1693, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402226

RESUMO

Conventional circuit elements are constrained by limitations in area and power efficiency at processing physical signals. Recently, researchers have delved into high-order dynamics and coupled oscillation dynamics utilizing Mott devices, revealing potent nonlinear computing capabilities. However, the intricate yet manageable population dynamics of multiple artificial sensory neurons with spatiotemporal coupling remain unexplored. Here, we present an experimental hardware demonstration featuring a capacitance-coupled VO2 phase-change oscillatory network. This network serves as a continuous-time dynamic system for sensory pre-processing and encodes information in phase differences. Besides, a decision-making module for special post-processing through software simulation is designed to complete a bio-inspired dynamic sensory system. Our experiments provide compelling evidence that this transistor-free coupling network excels in sensory processing tasks such as touch recognition and gesture recognition, achieving significant advantages of fewer devices and lower energy-delay-product compared to conventional methods. This work paves the way towards an efficient and compact neuromorphic sensory system based on nano-scale nonlinear dynamics.

3.
Sci Total Environ ; 912: 169077, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056672

RESUMO

The aim of this study is to propose a desulfurized rubber powder / styrene butadiene styrene (DRP/SBS) composite modified asphalt technology by combining the advantages of DRP and SBS. This reduces the production cost of modified asphalt and improves the performance of asphalt. In this paper, orthogonal tests were used to optimize preparation process parameters of DRP/SBS composite modified asphalt. And the physicochemical properties, modification mechanism of composite modified asphalt had been thoroughly studied. Subsequently, the results showed that the optimum content of DRP and SBS modifiers are 25 % and 2 %, respectively. The suitable preparation process is to add SBS first, then DRP, while shearing at 5000 r/min for 50 min. In addition, DRP/SBS composite modified asphalt has better high-temperature performance, viscosity-temperature characteristics, aging resistance, and storage stability. Meanwhile, the storage stability of the composite modified asphalt was verified by fluorescence microscopy test. Through the Fourier transform infrared spectroscopy test, it was observed that the composite modified asphalt modification process is a compatible and stable modification of physical and chemical coexistence. Overall, the composite modification method achieves recycling of waste tires while improving pavement performance, thus promoting the sustainability of pavement.

4.
Small ; 20(14): e2308226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37972269

RESUMO

The carbon dioxide reduction reaction (CO2RR) driven by electricity can transform CO2 into high-value multi-carbon (C2+) products. Copper (Cu)-based catalysts are efficient but suffer from low C2+ selectivity at high current densities. Here La(OH)3 in Cu catalyst is introduced to modify its electronic structure towards efficient CO2RR to C2+ products at ampere-level current densities. The La(OH)3/Cu catalyst has a remarkable C2+ Faradaic efficiency (FEC2+) of 71.2% which is 2.2 times that of the pure Cu catalyst at a current density of 1,000 mA cm-2 and keeps stable for 8 h. In situ spectroscopy and density functional theory calculations both show that La(OH)3 modifies the electronic structure of Cu. This modification favors *CO adsorption, subsequent hydrogenation, *CO─*COH coupling, and consequently increases C2+ selectivity. This work provides a guidance on facilitating C2+ product formation, and suppressing hydrogen evolution by La(OH)3 modification, enabling efficient CO2RR at ampere-level current densities.

5.
Cancer Biol Med ; 20(11)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38018033

RESUMO

Cancer is the leading cause of death worldwide. Early detection of cancer can lower the mortality of all types of cancer; however, effective early-detection biomarkers are lacking for most types of cancers. DNA methylation has always been a major target of interest because DNA methylation usually occurs before other detectable genetic changes. While investigating the common features of cancer using a novel guide positioning sequencing for DNA methylation, a series of universal cancer only markers (UCOMs) have emerged as strong candidates for effective and accurate early detection of cancer. While the clinical value of current cancer biomarkers is diminished by low sensitivity and/or low specificity, the unique characteristics of UCOMs ensure clinically meaningful results. Validation of the clinical potential of UCOMs in lung, cervical, endometrial, and urothelial cancers further supports the application of UCOMs in multiple cancer types and various clinical scenarios. In fact, the applications of UCOMs are currently under active investigation with further evaluation in the early detection of cancer, auxiliary diagnosis, treatment efficacy, and recurrence monitoring. The molecular mechanisms by which UCOMs detect cancers are the next important topics to be investigated. The application of UCOMs in real-world scenarios also requires implementation and refinement.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Metilação de DNA , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pescoço
6.
Neural Netw ; 166: 692-703, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37604078

RESUMO

Object recognition is often viewed as a feedforward, bottom-up process in machine learning, but in real neural systems, object recognition is a complicated process which involves the interplay between two signal pathways. One is the parvocellular pathway (P-pathway), which is slow and extracts fine features of objects; the other is the magnocellular pathway (M-pathway), which is fast and extracts coarse features of objects. It has been suggested that the interplay between the two pathways endows the neural system with the capacity of processing visual information rapidly, adaptively, and robustly. However, the underlying computational mechanism remains largely unknown. In this study, we build a two-pathway model to elucidate the computational properties associated with the interactions between two visual pathways. Specifically, we model two visual pathways using two convolution neural networks: one mimics the P-pathway, referred to as FineNet, which is deep, has small-size kernels, and receives detailed visual inputs; the other mimics the M-pathway, referred to as CoarseNet, which is shallow, has large-size kernels, and receives blurred visual inputs. We show that CoarseNet can learn from FineNet through imitation to improve its performance, FineNet can benefit from the feedback of CoarseNet to improve its robustness to noise; and the two pathways interact with each other to achieve rough-to-fine information processing. Using visual backward masking as an example, we further demonstrate that our model can explain visual cognitive behaviors that involve the interplay between two pathways. We hope that this study gives us insight into understanding the interaction principles between two visual pathways.


Assuntos
Cognição , Percepção Visual , Aprendizado de Máquina , Redes Neurais de Computação , Vias Visuais
7.
Environ Sci Pollut Res Int ; 30(15): 44251-44265, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683109

RESUMO

Traditional asphalt rubber (AR) has a high viscosity and poor fluidity, which makes its construction very difficult. Reducing viscosity has been identified as one of the effective way of solving these problems. Meanwhile, the mass production and improper discharge of waste engine oil (WEO) have a serious impact on the ecological environment, and its rational reuse needs to be addressed. In this paper, molecular models of AR and WEO-modified asphalt rubber (WEOMAR) was established by molecular dynamics (MD) simulations. The influence of WEO on asphalt component's behavior was studied by radial distribution function (RDF) and diffusion coefficient (D). Then, the microscopic mechanism of viscosity reduction was evaluated. Furthermore, the viscosity reduction behavior of WEO in AR was analyzed and verified by basic properties and low field nuclear magnetic resonance (LF-NMR) laboratory tests. The results showed that the RDF peak value of rubber molecules in WEOMAR is 14.07 higher than that of AR, at r = 2.16 Å. The D of saturated and aromatic components in WEOMAR obviously increased by 140% and 67.9%, respectively. The light component molecules increased after adding WEO into AR. The rubber molecule reduces the contact with asphaltene and resin, and the viscosity of AR is significantly reduced, which is confirmed by the macro tests.


Assuntos
Simulação de Dinâmica Molecular , Borracha , Viscosidade , Hidrocarbonetos
8.
Environ Sci Pollut Res Int ; 30(13): 38634-38649, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36585577

RESUMO

The large-scale application of bamboo has led to the production of enormous amounts of waste in the form of bamboo residue. In order to reuse the bamboo residue, three types of bamboo fiber (sinocalamus affinis fiber (SAF), green bamboo fiber (GBF), and phyllostachys pubescens fiber (PPF)) extracted from bamboo residues were studied. The properties of bamboo fiber modified asphalt were evaluated by ductility test, cone penetration test, rheological test, and low-field nuclear magnetic resonance (LF-NMR) test. Furthermore, the dispersion properties of bamboo fiber were analyzed by dispersion uniformity test. The results show that the mechanical and high-temperature properties of the bamboo fiber modified asphalt are obviously improved while the low-temperature crack resistance is only slightly weakened. Meanwhile, the signal intensities of SAF modified asphalt and GBF modified asphalt are basically the same before and after aging. It proved the viscosity is not changed much, which verified the good anti-aging properties of SAF modified asphalt and GBF modified asphalt. However, PPF is the best dispersed uniformly in the asphalt. The maximum allowable length and dosage of bamboo fibers is recommended as follows: SAF (9 mm, 2.0%), GBF (6 mm, 1.5%), and PPF (6 mm, 2.0%). The application of bamboo residue in asphalt not only emphasizes the recycling value of bamboo residue waste but also provides an optional natural fiber material for asphalt pavement construction, which meets the requirements of sustainable development.


Assuntos
Temperatura Baixa , Estruturas Vegetais , Poaceae
9.
Sci Bull (Beijing) ; 67(16): 1649-1658, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36546044

RESUMO

Two-dimensional (2D) transition metal chalcogenides (TMCs) are promising for nanoelectronics and energy applications. Among them, the emerging non-layered TMCs are unique due to their unsaturated dangling bonds on the surface and strong intralayer and interlayer bonding. However, the synthesis of non-layered 2D TMCs is challenging and this has made it difficult to study their structures and properties at thin thickness limit. Here, we develop a universal dual-metal precursors method to grow non-layered TMCs in which a mixture of a metal and its chloride serves as the metal source. Taking hexagonal Fe1-xS as an example, the thickness of the Fe1-xS flakes is down to 3 nm with a lateral size of over 100 µm. Importantly, we find ordered cation Fe vacancies in Fe1-xS, which is distinct from layered TMCs like MoS2 where anion vacancies are commonly observed. Low-temperature transport measurements and theoretical calculations show that 2D Fe1-xS is a stable semiconductor with a narrow bandgap of ∼60 meV. In addition to Fe1-xS, the method is universal in growing various non-layered 2D TMCs containing ordered cation vacancies, including Fe1-xSe, Co1-xS, Cr1-xS, and V1-xS. This work paves the way to grow and exploit properties of non-layered materials at 2D thickness limit.

10.
Nat Commun ; 13(1): 6863, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369234

RESUMO

Single-atom catalysts provide efficiently utilized active sites to improve catalytic activities while improving the stability and enhancing the activities to the level of their bulk metallic counterparts are grand challenges. Herein, we demonstrate a family of single-atom catalysts with different interaction types by confining metal single atoms into the van der Waals gap of two-dimensional SnS2. The relatively weak bonding between the noble metal single atoms and the host endows the single atoms with more intrinsic catalytic activity compared to the ones with strong chemical bonding, while the protection offered by the layered material leads to ultrahigh stability compared to the physically adsorbed single-atom catalysts on the surface. Specifically, the trace Pt-intercalated SnS2 catalyst has superior long-term durability and comparable performance to that of commercial 10 wt% Pt/C catalyst in hydrogen evolution reaction. This work opens an avenue to explore high-performance intercalated single-atom electrocatalysts within various two-dimensional materials.

11.
Nat Commun ; 13(1): 4472, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918342

RESUMO

Materials capable of extracting gold from complex sources, especially electronic waste (e-waste), are needed for gold resource sustainability and effective e-waste recycling. However, it remains challenging to achieve high extraction capacity and precise selectivity if only a trace amount of gold is present along with other metallic elements . Here we report an approach based on reduced graphene oxide (rGO) which provides an ultrahigh capacity and selective extraction of gold ions present in ppm concentrations (>1000 mg of gold per gram of rGO at 1 ppm). The excellent gold extraction performance is accounted to the graphene areas and oxidized regions of rGO. The graphene areas spontaneously reduce gold ions to metallic gold, and the oxidized regions allow good dispersibility of the rGO material so that efficient adsorption and reduction of gold ions at the graphene areas can be realized. By controlling the protonation of the oxidized regions of rGO, gold can be extracted exclusively, without contamination by the other 14 co-existing elements typically present in e-waste. These findings are further exploited to demonstrate recycling gold from real-world e-waste with good scalability and economic viability, as exemplified by using rGO membranes in a continuous flow-through process.


Assuntos
Grafite , Adsorção , Ouro
12.
Environ Sci Pollut Res Int ; 29(60): 90463-90478, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35871198

RESUMO

The comprehensive utilization of waste cooking oil (WCO) and waste engine oil (WEO) is of great significance to build a sustainable society because recycling WCO and WEO to develop a rejuvenator for asphalt pavement not only aids the reduction of environmental pollution, but also brings about significant benefits to the Earth's sustainable development. With a clear aim to contribute to a more efficient reuse of the waste oils and recycled asphalt mixtures, this paper develops a high-efficiency compound rejuvenator and determines the optimal combination of its main constituents (WCO and WEO) through orthogonal tests. Furthermore, the performance of the rejuvenator is verified by means of the four-fraction test and the traditional asphalt performance tests (penetration, ductility, softening point). These tests confirm the regeneration efficiency of the compound rejuvenator, and the optimum dosage of the compound rejuvenator is found of 7%. Subsequently, the mechanism of the compound rejuvenator in aged asphalt is examined, and following the application of the compound rejuvenator, it was concluded that the reclaimed asphalt pavement (RAP) could be maximized by 45%. Consequentially, the results of this research promote the recycling of WEO, WCO, and waste asphalt pavement materials, ultimately advocating the sustainability of pavement construction.


Assuntos
Óleos , Desenvolvimento Sustentável , Culinária
13.
Nat Commun ; 13(1): 3238, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688829

RESUMO

Two-dimensional (2D) semiconductors, especially transition metal dichalcogenides (TMDs), have been envisioned as promising candidates in extending Moore's law. To achieve this, the controllable growth of wafer-scale TMDs single crystals or periodic single-crystal patterns are fundamental issues. Herein, we present a universal route for synthesizing arrays of unidirectionally orientated monolayer TMDs ribbons (e.g., MoS2, WS2, MoSe2, WSe2, MoSxSe2-x), by using the step edges of high-miller-index Au facets as templates. Density functional theory calculations regarding the growth kinetics of specific edges have been performed to reveal the morphological transition from triangular domains to patterned ribbons. More intriguingly, we find that, the uniformly aligned TMDs ribbons can merge into single-crystal films through a one-dimensional edge epitaxial growth mode. This work hereby puts forward an alternative pathway for the direct synthesis of inch-scale uniform monolayer TMDs single-crystals or patterned ribbons, which should promote their applications as channel materials in high-performance electronics or other fields.

14.
Neural Netw ; 151: 349-364, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35472729

RESUMO

Categorical relationships between objects are encoded as overlapped neural representations in the brain, where the more similar the objects are, the larger the correlations between their evoked neuronal responses. These representation correlations, however, inevitably incur interference when memories are retrieved. Here, we propose that neural feedback, which is widely observed in the brain but whose function remains largely unknown, contributes to disentangle neural correlations to improve information retrieval. We study a hierarchical neural network storing the hierarchical categorical information of objects, and information retrieval goes from rough-to-fine, aided by the push-pull neural feedback. We elucidate that the push and the pull components of the feedback suppress the interferences due to the representation correlations between objects from different and the same categories, respectively. Our model reproduces the push-pull phenomenon observed in neural data and sheds light on our understanding of the role of feedback in neural information processing.


Assuntos
Encéfalo , Neurônios , Encéfalo/fisiologia , Retroalimentação , Armazenamento e Recuperação da Informação , Rememoração Mental/fisiologia
15.
Nanoscale ; 14(10): 3758-3767, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35234227

RESUMO

Twist-induced moiré bands and accompanied correlated phenomena have been extensively investigated in twisted hexagonal lattices with weak interlayer coupling. However, the formation of moiré bands in strongly coupled layered materials and their controlled tuning remain largely unexplored. Here, we systematically study the moiré bands in twisted trilayer black phosphorene (TTbP) and the influences of pressure and electric field on them. Moiré states can form in various TTbPs even when the twist angle is larger than 16° similar to that of twisted bilayer bP. However, different TTbPs show different localization patterns depending on the twisting layer, leading to distinct dipolar behaviors. While these moiré states become quasi-one-dimensional (1D) as the twist angle decreases, external pressure causes the crossover of moiré states from quasi-1D to 0D with a dramatic change in localization areas and greatly reduced bandwidth. Interestingly, compared to twisted bilayer and pristine bP, TTbPs show a much larger electric-field induced Stark effect, controllable by either the twist angle or twist layer. Our work thus demonstrates TTbP as an attractive platform to explore moiré-controlled electronic and optical properties, as well as tunable optoelectronic applications.

16.
Nanoscale ; 14(15): 5851-5858, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35357377

RESUMO

The research on two-dimensional (2D) van der Waals (vdW) magnets has promoted the development of ultrahigh-density data storage and nanoscale spintronic devices. However, the soft ferromagnetic behavior in most 2D magnets, which means the absence of remanent magnetization, severely limits their applications in realistic devices. Here, we report a layer-controlled ferromagnetic behavior in atomically thin CrSiTe3 flakes, where a transition from the soft to the hard ferromagnetic state occurs as the thickness of samples decreases down to several nanometers. Phenomenally, in contrast to the negligible hysteresis loop in the bulk counterparts, atomically thin CrSiTe3 shows a rectangular loop with finite magnetization and coercivity as the thickness decreases down to ∼8 nm, indicative of a single-domain and out-of-plane ferromagnetic order. We find that the stray field is weakened with decreasing thickness, which suppresses the formation of the domain wall. In addition, thickness-dependent ferromagnetic properties also reveal a crossover from 3 dimensional to 2 dimensional Ising ferromagnets, accompanied by a drop of the Curie temperature from 33 K for bulk to ∼17 K for the 4 nm sample. Our study paves the way towards exploring and learning much more about atomically thin and layered intrinsic ferromagnets.

17.
Nano Lett ; 22(5): 2112-2119, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226511

RESUMO

Transition metal dichalcogenide monolayers exhibit ultrahigh surface sensitivity since they expose all atoms to the surface and thereby influence their optoelectronic properties. Here, we report an intriguing lightening of the photoluminescence (PL) from the edge to the interior over time in the WS2 monolayers grown by physical vapor deposition method, with the whole monolayer brightened eventually. Comprehensive optical studies reveal that the PL enhancement arises from the p doping induced by oxygen adsorption. First-principles calculations unveil that the dissociation of chemisorbed oxygen molecule plays a significant role; i.e., the dissociation at one site can largely promote the dissociation at a nearby site, facilitating the photoluminescence lightening. In addition, we further manipulate such PL brightening rate by controlling the oxygen concentration and the temperature. The presented results uncover the extraordinary surface chemistry and related mechanism in WS2 monolayers, which deepens our insight into their unique PL evolution behavior.

18.
J Am Chem Soc ; 144(7): 3106-3116, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35148080

RESUMO

Two-dimensional transition metal dichalcogenides (TMDCs) show great potential as efficient catalysts for Li-CO2 batteries. However, the basal plane engineering on TMDCs toward bifunctional catalysts for Li-CO2 batteries is still poorly understood. In this work, density functional theory calculations reveal that nucleophilic N dopants and electrophilic S vacancies in the ReS2 plane tailor the interactions with Li atoms and C/O atoms in intermediates, respectively. The electrophilic and nucleophilic dual centers show suitable adsorption with all intermediates during discharge and charge, resulting in a small energy barrier for the rate-determining step. Thus, an efficient bifunctional catalyst is produced toward Li-CO2 batteries. As a result, the optimal catalyst achieves an ultrasmall voltage gap of 0.66 V and an ultrahigh energy efficiency of 81.1% at 20 µA cm-2, which is superior to those of previous catalysts under similar conditions. The introduction of electrophilic and nucleophilic dual centers provides new avenues for designing excellent bifunctional catalysts for Li-CO2 batteries.

19.
Nano Lett ; 22(3): 1398-1405, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35041435

RESUMO

Two-dimensional (2D) MXene-loaded single-atom (SA) catalysts have drawn increasing attention. SAs immobilized on oxygen vacancies (OV) of MXene are predicted to have excellent catalytic performance; however, they have not yet been realized experimentally. Here Pt SAs immobilized on the OV of monolayer Ti3C2Tx flakes are constructed by a rapid thermal shock technique under a H2 atmosphere. The resultant Ti3C2Tx-PtSA catalyst exhibits excellent hydrogen evolution reaction (HER) performance, including a small overpotential of 38 mV at 10 mA cm-2, a high mass activity of 23.21 A mgPt-1, and a large turnover frequency of 23.45 s-1 at an overpotential of 100 mV. Furthermore, density functional theory calculations demonstrate that anchoring the Pt SA on the OV of Ti3C2Tx helps to decrease the binding energy and the hybridization strength between H atoms and the supports, contributing to rapid hydrogen adsorption-desorption kinetics and high activity for the HER.

20.
Nano Lett ; 22(3): 1207-1216, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35084869

RESUMO

Flexible lithium-sulfur (Li-S) batteries with high mechanical compliance and energy density are highly desired. This manuscript reported that large-area freestanding MXene (Ti3C2Tx) film has been obtained through a scalable drop-casting method, significantly improving adhesion to the sulfur layer under the continuously bent. Titanium oxide anchored on holey Ti3C2Tx (TiO2/H-Ti3C2Tx) was also produced by the well-controlled oxidation of few-layer Ti3C2Tx, which greatly facilitates lithium ion transport as well as prevents the shuttling of lithium polysulfides. Therefore, the obtained sandwich electrode has demonstrated a high capacity of 740 mAh g-1 at 2 C and a high capacity retention of 81% at 1 C after 500 cycles. Flexible Li-S batteries based on this sandwich electrode have a capacity retention as high as 95% after bending 500 times. This work provides effective design strategies of MXene for flexible batteries and wearable electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...