Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Metab Syndr Relat Disord ; 21(8): 453-459, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37646719

RESUMO

Objectives: Machine learning has potential to improve the management of lipid disorders. We explored the utility of machine learning in high-risk patients in primary care receiving cholesterol-lowering medications. Methods: Machine learning algorithms were created based on lipid management guidelines for England [National Institute for Health and Care Excellence (NICE) CG181] to reproduce the guidance with >95% accuracy. Natural language processing and therapy identification algorithms were applied to anonymized electronic records from six South London primary care general practices to extract medication information from free text fields. Results: Among a total of 48,226 adult patients, a subset of 5630 (mean ± standard deviation, age = 67 ± 13 years; male:female = 55:45) with a history of lipid-lowering therapy were identified. Additional major cardiometabolic comorbidities included type 2 diabetes in 13% (n = 724) and hypertension in 32% (n = 1791); all three risk factors were present in a further 28% (n = 1552). Of the 5630 patients, 4290 (76%) and 1349 (24%) were in primary and secondary cardiovascular disease prevention cohorts, respectively. Statin monotherapy was the most common current medication (82%, n = 4632). For patients receiving statin monotherapy, 71% (n = 3269) were on high-intensity therapy aligned with NICE guidance with rates being similar for the primary and secondary prevention cohorts. In the combined cohort, only 46% of patients who had been prescribed lipid-lowering therapy in the previous 12 months achieved the NICE treatment goal of >40% reduction in non-high-density lipoprotein cholesterol from baseline pretreatment levels. Based on the most recent data entry for patients not at goal the neural network recommended either increasing the dose of statin, adding complementary cholesterol-lowering medication, or obtaining an expert lipid opinion. Conclusions: Machine learning can be of value in (a) quantifying suboptimal lipid-lowering prescribing patterns, (b) identifying high-risk patients who could benefit from more intensive therapy, and (c) suggesting evidence-based therapeutic options.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inibidores de Hidroximetilglutaril-CoA Redutases , Adulto , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , LDL-Colesterol , Colesterol , Atenção Primária à Saúde , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle
2.
Chemosphere ; 340: 139923, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619751

RESUMO

Advanced oxidation process (AOP) based on peroxymonosulfate (PMS) has aroused extensive discussion in the degradation of organic pollutants due to the strong oxidative ability of SO4•-. Great attention has been paid to developing transition metal catalysts for PMS activation. Still, few studies focused on the co-catalysis effect of non-redox metals. To study the co-catalysis of Mg and develop a more efficient metal catalyst, the CoMg2Mn-LDO was prepared by a co-precipitation method accompanied by calcination. The material showed an excellent ability for PMS activation. 97.1% of Orange Ⅱ was degraded within 15 min with the reaction rate constant (kobs) of 0.539 min-1 when pH equals 6.7, the dosages of CoMg2Mn-LDO and PMS were 90 mg L-1 and 100 mg L-1, respectively. By contrast, the value of kobs was 0.375 min-1 for the system of Co3Mn-LDO/PMS at the same experimental conditions. The electron paramagnetic resonance (EPR) and quenching experiments results proved the existence of O2•-, SO4•- and HO• in the CoMg2Mn-LDO/PMS system and the dominant role of SO4•- in Orange Ⅱ degradation. The synergistic effects among Co, Mn, and Mg were found to be responsible for the outstanding catalytic ability of CoMg2Mn-LDO. The presence of Mg could not only promote the formation of Mg-HSO5- and CoOH+ complexes but also reduce the leaching of Co and Mn, which accelerated the generation of free radicals and decreased secondary pollution risk. Based on the overall analysis, reasonable activation mechanisms of PMS and possible degradation pathways of Orange Ⅱ in this reaction system were proposed. This work proves that Mg could be applied as an effective co-catalytic element and provides new insight into developing transition metal catalysts for PMS-based AOPs.


Assuntos
Compostos Azo , Peróxidos , Benzenossulfonatos , Cobalto
3.
Vet Res Commun ; 47(4): 2017-2025, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37402083

RESUMO

This study aimed to investigate the effects of replacing of dietary inorganic iron with iron-rich Lactobacillus plantarum and iron-rich Candida utilis on the growth performance, serum parameters, immune function and iron metabolism of weaned piglets. Fifty-four 28-day-old healthy Duroc × Landrace × Yorkshire castrated male weanling piglets of similar body weight were randomly and equally divided into three groups. The piglets were kept in three pens per group, with six pigs in each pen. The dietary treatments were (1) a basal diet + ferrous sulfate preparation containing 120 mg/kg iron (CON); (2) a basal diet + iron-rich Candida utilis preparation containing 120 mg/kg iron (CUI); and (3) a basal diet + iron-rich Lactobacillus plantarum preparation containing 120 mg/kg iron (LPI). The entire feeding trial lasted for 28 days, after which blood, viscera, and intestinal mucosa were collected. The results showed no significant difference in growth parameters and organ indices of the heart, liver, spleen, lung, and kidney of weaned piglets when treated with CUI and LPI compared with the CON group (P > 0.05). However, CUI and LPI significantly reduced the serum contents of AST, ALP, and LDH (P < 0.05). Serum ALT content was significantly lower in the LPI treatment compared to the CON group (P < 0.05). Compared to CON, CUI significantly increased the contents of serum IgG and IL-4 (P < 0.05), and CUI significantly decreased the content of IL-2. LPI significantly increased the contents of serum IgA, IgG, IgM and IL-4 (P < 0.05), while LPI significant decreased the levels of IL-1ß, IL-2, IL-6, IL-8, and TNF-α compared to CON (P < 0.05). CUI led to a significant increase in ceruloplasmin activity and TIBC (P < 0.05). LPI significantly increased the contents of serum Fe and ferritin, and increased the serum ceruloplasmin activity and TIBC compared to CON (P < 0.05). Furthermore, CUI resulted in a significant increase in the relative mRNA expression of FPN1 and DMT1 in the jejunal mucosa (P < 0.05). LPI significantly increased the relative mRNA expression of TF, FPN1, and DMT1 in the jejunal mucosa (P < 0.05). Based on these results, the replacement of dietary inorganic iron with an iron-rich microbial supplement could improve immune function, iron absorption and storage in piglets.


Assuntos
Ceruloplasmina , Ferro , Animais , Masculino , Suínos , Interleucina-2 , Interleucina-4 , RNA Mensageiro , Imunoglobulina G , Suplementos Nutricionais
4.
Chin Med J (Engl) ; 136(7): 815-821, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37027433

RESUMO

BACKGROUND: Immunotherapies such as adoptive immune cell infusion and immune-modulating agents are widely used for cancer treatment, and the concomitant symptoms, including cytokine release syndrome (CRS) or immune-related adverse events (irAEs), are frequently reported. However, clinical manifestations induced by mismatched donor granulocyte colony-stimulating factor mobilized peripheral blood mononuclear cell (GPBMC) infusion in patients receiving microtransplant (MST) have not yet been well depicted. METHODS: We analyzed 88 cycles of mismatched GPBMC infusion in patients with acute myeloid leukemia receiving MST and 54 cycles of chemotherapy without GPBMC infusion as a comparison. Clinical symptoms and their correlation with clinical features, laboratory findings, and clinical response were explored. RESULTS: Fever (58.0% [51/88]) and chills (43.2% [38/88]) were the significant early-onset symptoms after GPBMC infusion. Patients possessing less human leukocyte antigen-matching loci with the donor or those with unrelated donors experienced more chills (3 [2-5] loci vs. 5 [3-5] loci, P  = 0.043 and 66.7% [12/18] vs. 37.1% [26/70], P  = 0.024). On the other hand, those with decreased CD4 + /CD8 + T-cell ratio developed more fever (0.8 [0.7-1.2] vs. 1.4 [1.1-2.2], P  = 0.007). Multivariable analysis demonstrated that younger patients experienced more fever (odds ratio [OR] = 0.963, 95% confidence interval [CI]: 0.932-0.995, P  = 0.022), while patients with younger donors experienced more chills (OR = 0.915, 95% CI: 0.859-0.975, P  = 0.006). Elevated ultra-sensitive C-reactive protein levels in the absence of cytokine storm were observed following GPBMC infusion, which indicated mild and transient inflammatory response. Although no predictive value of infusion-related syndrome to leukemia burden change was found, the proportion of host pre-treatment activated T cells was positively correlated with leukemia control. CONCLUSIONS: Mismatched GPBMC infusion in MST induced unique infusion-related symptoms and laboratory changes, which were associated with donor- or recipient-derived risk factors, with less safety and tolerance concerns than reported CRS or irAEs.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Leucócitos Mononucleares , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Leucemia Mieloide Aguda/terapia , Doadores não Relacionados , Fator Estimulador de Colônias de Granulócitos
5.
Reprod Sci ; 30(7): 2210-2218, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36656424

RESUMO

Previous studies had shown that the gut microbiota of polycystic ovary syndrome (PCOS) patients had significant differences from those of healthy individuals, which may play an important role in the pathogenesis of PCOS. Lifestyle intervention, such as nutritional intervention, could improve the metabolic profiles and PCOS-like phenotypes of PCOS patients. Meanwhile, nutritional intervention could rapidly alter and reshape the distribution of gut microbiota in individuals. Therefore, we sought to investigate the differences in gut microbiota in overweight and obese PCOS patients with or without nutritional intervention. Thirty-six overweight and obese PCOS patients were finally enrolled in the study. Eighteen individuals who refused nutritional intervention (RNI) were collected as the RNI group. Eighteen individuals who received the nutritional intervention were collected as the pre-NI group before the nutritional intervention. And they were also collected as the NI group after the nutritional intervention for 4-12 weeks. Significant decreases in BMI, FBG, TC, TG, APO A1, and APO B were observed when comparing the NI group with the pre-NI and RNI groups after the nutritional intervention for 4-12 weeks. Meanwhile, the differences in the phylum Firmicutes, Bacteroidetes, and the species Eubacterium rectale, Flavonifractor plautii, and Bacteroides vulgatus between the NI and the RNI groups were observed, which may be potentially linked to the improved inflammatory state and PCOS-like phenotypes of overweight and obese PCOS individuals.


Assuntos
Microbioma Gastrointestinal , Síndrome do Ovário Policístico , Humanos , Feminino , Sobrepeso/complicações , Sobrepeso/terapia , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/terapia , Obesidade/complicações , Obesidade/terapia , Metaboloma
6.
Digital Chinese Medicine ; (4): 9-27, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-973463

RESUMO

@#【Objective】 To provide a new idea for the treatment of depression by summarizing the antidepressant effect and mechanism of active ingredients in functional food, and medicine and food homologous products. 【Methods】 The literature related to the antidepressant of functional food or medicine and food homologous products from September 25, 1996 to September 5, 2022 was collected through PubMed, Google Academic, Web of Science, and China National Knowledge Infrastructure (CNKI) databases. After that, their antidepressant active ingredients and mechanism of action were systematically summarized and analyzed. 【Results】 A total of 146 pieces of literature were involved in the study, including 67 plant-derived functional foods or medicine and food homologous products, 32 antidepressant extracts (including 8 flavonoid extracts), and 87 antidepressant active ingredients. The 87 antidepressant active ingredients include 7 terpenes, 22 saponins, 15 flavonoids, 11 phenylpropanoids, 7 phenols, 6 sugars, 8 alkaloids, and 11 others. 【Conclusion】 The study summarized and analyzed the active ingredients and mechanisms of antidepressants in functional foods and medicine and food homologous products, which provides a new vision for the development of new antidepressants and a potential alternative treatment for patients with depression.

7.
Nat Commun ; 13(1): 7796, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528626

RESUMO

Control of mRNA translation adjusts protein production rapidly and facilitates local cellular responses to environmental conditions. Traditionally initiation of translation is considered to be a major translational control point, however, control of peptide elongation is also important. Here we show that the function of the elongation factor, eIF5a, is regulated dynamically in naïve CD8+ T cells upon activation by post-translational modification, whereupon it facilitates translation of specific subsets of proteins. eIF5a is essential for long-term survival of effector CD8+ T cells and sequencing of nascent polypeptides indicates that the production of proteins which regulate proliferation and key effector functions, particularly the production of IFNγ and less acutely TNF production and cytotoxicity, is dependent on the presence of functional eIF5a. Control of translation in multiple immune cell lineages is required to co-ordinate immune responses and these data illustrate that translational elongation contributes to post-transcriptional regulons important for the control of inflammation.


Assuntos
Linfócitos T CD8-Positivos , Elongação Traducional da Cadeia Peptídica , Linfócitos T CD8-Positivos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Peptídeos/metabolismo , Ciclo Celular
8.
Front Immunol ; 13: 1054445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531995

RESUMO

Background: A lot of studies have revealed that chronic urticaria (CU) is closely linked with COVID-19. However, there is a lack of further study at the gene level. This research is aimed to investigate the molecular mechanism of COVID-19-related CU via bioinformatic ways. Methods: The RNA expression profile datasets of CU (GSE72540) and COVID-19 (GSE164805) were used for the training data and GSE57178 for the verification data. After recognizing the shared differently expressed genes (DEGs) of COVID-19 and CU, genes enrichment, WGCNA, PPI network, and immune infiltration analyses were performed. In addition, machine learning LASSO regression was employed to identify key genes from hub genes. Finally, the networks, gene-TF-miRNA-lncRNA, and drug-gene, of key genes were constructed, and RNA expression analysis was utilized for verification. Results: We recognized 322 shared DEGs, and the functional analyses displayed that they mainly participated in immunomodulation of COVID-19-related CU. 9 hub genes (CD86, FCGR3A, AIF1, CD163, CCL4, TNF, CYBB, MMP9, and CCL3) were explored through the WGCNA and PPI network. Moreover, FCGR3A, TNF, and CCL3 were further identified as key genes via LASSO regression analysis, and the ROC curves confirmed the dependability of their diagnostic value. Furthermore, our results showed that the key genes were significantly associated with the primary infiltration cells of CU and COVID-19, such as mast cells and macrophages M0. In addition, the key gene-TF-miRNA-lncRNA network was constructed, which contained 46 regulation axes. And most lncRNAs of the network were proved to be a significant expression in CU. Finally, the key gene-drug interaction network, including 84 possible therapeutical medicines, was developed, and their protein-protein docking might make this prediction more feasible. Conclusions: To sum up, FCGR3A, TNF, and CCL3 might be potential biomarkers for COVID-19-related CU, and the common pathways and related molecules we explored in this study might provide new ideas for further mechanistic research.


Assuntos
COVID-19 , Urticária Crônica , MicroRNAs , RNA Longo não Codificante , Humanos , COVID-19/genética , Biologia Computacional , Biomarcadores , MicroRNAs/genética
9.
Front Plant Sci ; 13: 1027551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275523

RESUMO

Transporters belonging to the natural resistance-associated macrophage protein (Nramp) family play important roles in metal uptake and homeostasis. Although Nramp members have been functionally characterized in plants, the role of Nramp in the important tropical forage legume Stylosanthes guianensis (stylo) is largely unknown. This study aimed to determine the responses of Nramp genes to metal stresses and investigate its metal transport activity in stylo. Five SgNramp genes were identified from stylo. Expression analysis showed that SgNramp genes exhibited tissue preferential expressions and diverse responses to metal stresses, especially for manganese (Mn), suggesting the involvement of SgNramps in the response of stylo to metal stresses. Of the five SgNramps, SgNramp1 displayed the highest expression in stylo roots. A close correlation between SgNramp1 expression and root Mn concentration was observed among nine stylo cultivars under Mn limited condition. The higher expression of SgNramp1 was correlated with a high Mn uptake in stylo. Subsequent subcellular localization analysis showed that SgNramp1 was localized to the plasma membrane. Furthermore, heterologous expression of SgNramp1 complemented the phenotype of the Mn uptake-defective yeast (Saccharomyces cerevisiae) mutant Δsmf1. Mn concentration in the yeast cells expressing SgNramp1 was higher than that of the empty vector control, suggesting the transport activity of SgNramp1 for Mn in yeast. Taken together, this study reveals that SgNramp1 is a plasma membrane-localized transporter responsible for Mn uptake in stylo.

10.
Vaccine ; 40(40): 5781-5790, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36055874

RESUMO

The global burden of malaria remains substantial. Circumsporozoite protein (CSP) has been demonstrated to be an effective target antigen, however, improvements that offer more efficacious and more durable protection are still needed. In support of research and development of next-generation malaria vaccines, Walter Reed Army Institute of Research (WRAIR) has developed a CSP-based antigen (FMP013) and a novel adjuvant ALFQ (Army Liposome Formulation containing QS-21). We present a single center, open-label, dose-escalation Phase 1 clinical trial to evaluate the safety and immunogenicity of the FMP013/ALFQ malaria vaccine candidate. In this first-in-human evaluation of both the antigen and adjuvant, we enrolled ten subjects; five received 20 µg FMP013 / 0.5 mL ALFQ (Low dose group), and five received 40 µg FMP013 / 1.0 mL ALFQ (High dose group) on study days 1, 29, and 57. Adverse events and immune responses were assessed during the study period. The clinical safety profile was acceptable and there were no serious adverse events. Both groups exhibited robust humoral and cellular immunological responses, and compared favorably with historical responses reported for RTS,S/AS01. Based on a lower reactogenicity profile, the 20 µg FMP013 / 0.5 mL ALFQ (Low dose) was selected for follow-on efficacy testing by controlled human malaria infection (CHMI) with a separate cohort. Trial Registration:Clinicaltrials.gov Identifier NCT04268420 (Registered February 13, 2020).


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adjuvantes Imunológicos/efeitos adversos , Adulto , Anticorpos Antiprotozoários , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Proteínas de Protozoários
11.
Vaccine ; 40(31): 4270-4280, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35697572

RESUMO

Despite the development of prophylactic anti-malarial drugs and practices to prevent infection, malaria remains a health concern. Preclinical testing of novel malaria vaccine strategies achieved through rational antigen selection and novel particle-based delivery platforms is yielding encouraging results. One such platform, self-assembling virus-like particles (VLP) is safer than attenuated live viruses, and has been approved as a vaccination tool by the FDA. We explore the use of Norovirus sub-viral particles lacking the natural shell (S) domain forming the interior shell but that retain the protruding (P) structures of the native virus as a vaccine vector. Epitope selection and their surface display has the potential to focus antigen specific immune responses to crucial epitopes. Recombinant P-particles displaying epitopes from two malaria antigens, Plasmodium falciparum (Pf) CelTOS and Plasmodium falciparum (Pf) CSP, were evaluated for immunogenicity and their ability to confer protection in a murine challenge model. Immune responses induced in mice resulted either in sterile protection (displaying PfCelTOS epitopes) or in antibodies with functional activity against sporozoites (displaying PfCSP epitopes) in an in vitro liver-stage development assay (ILSDA). These results are encouraging and support further evaluation of this platform as a vaccine delivery system.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Norovirus , Animais , Anticorpos Antiprotozoários , Epitopos , Malária Falciparum/prevenção & controle , Camundongos , Plasmodium falciparum , Proteínas de Protozoários/genética , Esporozoítos
12.
NPJ Vaccines ; 7(1): 13, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087099

RESUMO

The Circumsporozoite Protein (CSP) of Plasmodium falciparum contains an N-terminal region, a conserved Region I (RI), a junctional region, 25-42 copies of major (NPNA) and minor repeats followed by a C-terminal domain. The recently approved malaria vaccine, RTS,S/AS01 contains NPNAx19 and the C-terminal region of CSP. The efficacy of RTS,S against natural infection is low and short-lived, and mapping epitopes of inhibitory monoclonal antibodies may allow for rational improvement of CSP vaccines. Tobacco Mosaic Virus (TMV) was used here to display the junctional epitope (mAb CIS43), Region I (mAb 5D5), NPNAx5, and NPNAx20 epitope of CSP (mAbs 317 and 580). Protection studies in mice revealed that Region I did not elicit protective antibodies, and polyclonal antibodies against the junctional epitope showed equivalent protection to NPNAx5. Combining the junctional and NPNAx5 epitopes reduced immunogenicity and efficacy, and increasing the repeat valency to NPNAx20 did not improve upon NPNAx5. TMV was confirmed as a versatile vaccine platform for displaying small epitopes defined by neutralizing mAbs. We show that polyclonal antibodies against engineered VLPs can recapitulate the binding specificity of the mAbs and immune-focusing by reducing the structural complexity of an epitope may be superior to immune-broadening as a vaccine design approach. Most importantly the junctional and restricted valency NPNA epitopes can be the basis for developing highly effective second-generation malaria vaccine candidates.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34861554

RESUMO

The plateau pika, a typical hypoxia-tolerant mammal lives 3000-5000 m above sea level on the Qinghai-Tibet Plateau, has acquired many physiological and morphological characteristics and strategies in its adaptation to sustained, high-altitude hypoxia. Blunted hypoxic pulmonary vasoconstriction is one such strategy, but the genes involved in this strategy have not been elucidated. Here, we investigated the genes involved and their expression profiles in the lung transcriptome of plateau pikas subjected to different hypoxic conditions (using low-pressure oxygen cabins). A slight, right ventricular hypertrophy was observed in pikas of the control group (altitude: 3200 m) vs. those exposed to 5000 m altitude conditions for one week. Our assembly identified 67,774 genes; compared with their expression in the control animals, 866 and 8364 genes were co-upregulated and co-downregulated, respectively, in pikas subjected to 5000 m altitude conditions for 1 and 4 w. We elucidated pathways that were associated with pulmonary vascular arterial pressure, including vascular smooth muscle contraction, HIF-1 signalling, calcium signalling, cGMP-PKG signalling, and PI3K-Akt signalling based on the differentially expressed genes; the top-100 pathway enrichments were found between the control group and the group exposed to 5000 m altitude conditions for 4 w. The mRNA levels of 18 candidate gene showed that more than 83% of genes were expressed and the number of transcriptome The up-regulated genes were EPAS1, Hbα, iNOS, CX40, CD31, PPM1B, HIF-1α, MYLK, Pcdh12, Surfactant protein B, the down-regulated genes were RYR2, vWF, RASA1, CLASRP, HIF-3α. Our transcriptome data are a valuable resource for future genomic studies on plateau pika.


Assuntos
Lagomorpha , Fosfatidilinositol 3-Quinases , Animais , Perfilação da Expressão Gênica , Hipóxia/genética , Hipóxia/metabolismo , Lagomorpha/genética , Lagomorpha/metabolismo , Pulmão/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
14.
Plant Physiol Biochem ; 170: 325-337, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954567

RESUMO

Malate dehydrogenase (MDH, EC 1.1.1.37) is a key enzyme that catalyzes a reversible NAD-dependent dehydrogenase reaction from oxaloacetate (OAA) to malate. Although MDH has been documented to participate in cellular metabolism and redox homeostasis in plants, the roles of MDH members in the tropical legume Stylosanthes guianensis (stylo) remain less definitive. In this study, except SgMDH1 that had been previously characterized, six novel MDH genes were isolated from stylo and were then designated as SgMDH2 to SgMDH7. All of the SgMDH proteins possessed the common features of NAD binding, dimerization interface and substrate binding sites. Expression analysis showed that three SgMDHs exhibited preferential expressions in leaves, and one SgMDH was mainly expressed in roots. Furthermore, SgMDHs were regulated by nutrient deficiencies in stylo roots, especially for phosphorus (-P) and potassium (-K) deficiencies. Differential responses of SgMDHs to trace metal stress and heavy metal toxicity were observed in stylo roots, suggesting the involvement of SgMDHs in the response of stylo to metal stresses. The six novel SgMDHs were subsequently expressed and purified from Escherichia coli to analyze their biochemical properties. Although SgMDHs exhibited variations in subcellular localizations, each SgMDH protein displayed a high level of catalytic efficiency towards OAA and NADH but a low level of catalytic efficiency towards malate and NAD+. In addition, the activities of recombinant SgMDH proteins were pH-dependent and temperature-sensitive, and exhibited differential regulations by various metal ions. These results together suggest the potential roles of SgMDHs in stylo coping with nutrient and metal stresses.


Assuntos
Fabaceae , Malato Desidrogenase , Malato Desidrogenase/genética , Malatos , NAD , Nutrientes , Raízes de Plantas
15.
Front Plant Sci ; 12: 683813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912352

RESUMO

Manganese is an essential micronutrient for plant growth but can be toxic to plants when it reaches excessive levels. Although metal tolerance proteins (MTPs), which belong to the cation diffusion facilitator (CDF) family, have been demonstrated to play critical roles in manganese (Mn) tolerance in plants, the characteristics and functions of GmMTP members in the response of soybean (Glycine max) to Mn toxicity have not been documented. In this study, growth inhibition was observed in soybean plants that were exposed to a toxic level of Mn in hydroponics, as reflected by the generation of brown spots, and decreased leaf chlorophyll concentration and plant fresh weight. Subsequent genome-wide analysis resulted in the identification of a total of 14 GmMTP genes in the soybean genome. Among these GmMTPs, 9 and 12 were found to be regulated by excess Mn in leaves and roots, respectively. Furthermore, the function of GmMTP8.1, a Mn-CDF homologue of ShMTP8 identified in the legume Stylosanthes hamata that is involved in Mn detoxification, was characterized. Subcellular localization analysis showed that GmMTP8.1 was localized to the endoplasmic reticulum (ER). Heterologous expression of GmMTP8.1 led to the restoration of growth of the Mn-hypersensitive yeast (Saccharomyces cerevisiae) mutant Δpmr1, which is made defective in Mn transport into the Golgi apparatus by P-type Ca/Mn-ATPase. Furthermore, GmMTP8.1 overexpression conferred tolerance to the toxic level of Mn in Arabidopsis (Arabidopsis thaliana). Under excess Mn conditions, concentrations of Mn in shoots but not roots were decreased in transgenic Arabidopsis, overexpressing GmMTP8.1 compared to the wild type. The overexpression of GmMTP8.1 also led to the upregulation of several transporter genes responsible for Mn efflux and sequestration in Arabidopsis, such as AtMTP8/11. Taken together, these results suggest that GmMTP8.1 is an ER-localized Mn transporter contributing to confer Mn tolerance by stimulating the export of Mn out of leaf cells and increasing the sequestration of Mn into intracellular compartments.

16.
Am J Transl Res ; 13(11): 12523-12535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956470

RESUMO

OBJECTIVE: To determine the impact of periodontitis on renal impairment induced by obesity. METHODS: Periodontitis and obesity models were induced using silk ligatures with bacteria and high-fat diet, respectively. Indicators of renal function were compared. Renal tubular epithelial cells (RTECs) were treated with lipopolysaccharides from periodontal pathogens in a high-fat environment to induce cell models of periodontitis and obesity. The transforming growth factor-ß/mothers against decapentaplegic homolog (Smad) (TGF-ß/Smad) pathway was evaluated both in vivo and in vitro. The indicators of renal function, renal pathological changes, and serum inflammatory cytokines were measured. The viability/apoptosis of RTECs and the expression of inflammatory cytokines were determined. RESULTS: Periodontitis resulted in an increase in TGF-ß/Smad activity in the kidney of obese mice. Moreover, the activity of RTECs was also increased in vitro. Downregulation of TGF-ß led to reduced TGF-ß, p-Smad2, p-Smad3, and Smad7 levels in kidney tissue and RTECs, ameliorated renal function indicators and renal pathological changes, increased viability and apoptosis of RTECs, and decreased levels of inflammatory cytokines. CONCLUSION: Periodontitis regulates renal impairment via the TGF-ß/Smad pathway in obese mice.

17.
Animal ; 15(12): 100399, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34768172

RESUMO

Antibiotics are commonly overused to prevent livestock from diseases and to increase production performance. As potential substitutes of antibiotics, plant extracts have attracted the attention of researchers. It was known to all that addition of Macleaya cordata extract (MCE) to the food could advance immunity, intestinal health and animal performance. Thus, it was conducted to investigate the influence of MCE (0, 100, 150 and 200 mg/kg, with six replicate pens/treatment and 24 hens/pen) on intestinal morphology and microbial diversity in different intestinal segments in Xuefeng black-boned chicken in this study. The results showed that MCE supplement (100, 150 and 200 mg/kg) significantly diminished (P < 0.05) the crypt depth of the jejunum as compared to basal diet group. The 100 mg/kg group displayed a marked increase (P < 0.05), compared with 0 and 200 mg/kg group, in ileum microbial diversity as represented by the Shannon's index. In the cecum, treatment of MCE significantly decreased (P < 0.01) the Firmicutes, but Deferribacteres in 200 mg/kg MCE group were significantly raised (P < 0.05). In conclusion, we found that MCE improved intestinal morphology and reduced the crypt depth in jejunum. Together, addition of 200 mg/kg MCE modulated intestinal microbiota, increased beneficial bacteria such as Lactobacillus. Adding 100 mg/kg MCE to diet increased bacterial community diversity and relative abundance in jejunum and ileum, but had no effect on cecum microbial diversity.


Assuntos
Galinhas , Suplementos Nutricionais , Microbiota , Extratos Vegetais , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Intestinos/anatomia & histologia , Intestinos/efeitos dos fármacos , Papaveraceae/química , Extratos Vegetais/farmacologia
18.
Front Microbiol ; 12: 706424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603233

RESUMO

The addition of Hermetia illucens larvae meal (HILM) to the feed could contribute to particular antimicrobial and intestinal health in animal husbandry. This study was conducted to investigate the effects of HILM on intestinal morphology and microbial diversity in different intestinal segments of Xuefeng black-bone chickens. All of 432 birds (45 weeks old) were randomly assigned to four equal groups with six replicates and 18 hens in each replicate: (A) basal diet, (B) basal diet with 1% HILM, (C) basal diet with 3% HILM, and (D) basal diet with 5% HILM. The results showed that, compared with the basal diet group, the HILM supplement significantly increased the abundance-based coverage estimator (ACE) and Chao index in cecum (p < 0.05). Diet with 1% HILM significantly increased the villus height (VH) of the duodenum (p < 0.05) and cecum microbial diversity as represented by the Simpson index (p < 0.05). In particular, 1% HILM displayed a markedly increase in the genus unclassified Bacteroidales (cecum, p < 0.05). A basal diet with 3% HILM markedly increased the beneficial genus Romboutsia (jejunum, p < 0.05). Also, principal component analysis (PCA) cluster analysis showed that 3% of HILM was more individual than other groups (p < 0.05). However, 5% HILM decreased the VH and the ratio of villus height to crypt depth (VH/CD) of the jejunum and increased beneficial bacteria such as Staphylococcus (p < 0.05), which was regarded as pathogenetic genera. In conclusion, we found that HILM improved intestinal morphology and increased microbiological diversity and species abundance. Together, dietary supplementation of 1 or 3% HILM might benefit the intestinal morphology and intestinal microbiota of Xuefeng black-bone chicken. However, the addition of 5% HILM could decrease VH and the ratio of VH/CD of the jejunum and increased pathogenetic genera. HILM was an excellent protein substitute for Xuefeng black-bone chickens, which could meet the nutritional requirements under the condition of less feed. These results provide information for HILM meal as an alternative source of soybean meal in Xuefeng black-bone chickens' feed.

19.
Front Med (Lausanne) ; 8: 619357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124084

RESUMO

The current global coronavirus disease 2019 (COVID-19) outbreak is still exerting severe global implications, and its development in various regions is complex and variable. The high risk of cross-infection poses a great challenge to the dental practice environment; it is therefore urgent to develop a set of pandemic prevention measures to ensure dental practice safety during the COVID-19 outbreak. Therefore, we combined the epidemiological characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), public emergency measures for COVID-19, characteristics of dental practice, and relevant literature reports to develop a set of dynamic practice measures for dental practices in high-, medium-, and low-risk areas affected by COVID-19. This will help dental practices to achieve standard prevention and ensure their safe and smooth operation during the pandemic. It is hoped that these measures will provide a reference basis for dental hospitals and dental clinics in their care and pandemic prevention work.

20.
NPJ Vaccines ; 6(1): 84, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145286

RESUMO

Human malaria affects the vast majority of the world's population with the Plasmodium falciparum species causing the highest rates of morbidity and mortality. With no licensed vaccine and leading candidates achieving suboptimal protection in the field, the need for an effective immunoprophylactic option continues to motivate the malaria research community to explore alternative technologies. Recent advances in the mRNA discipline have elevated the long-neglected platform to the forefront of infectious disease research. As the immunodominant coat protein of the invasive stage of the malaria parasite, circumsporozoite protein (PfCSP) was selected as the antigen of choice to assess the immunogenic and protective potential of an mRNA malaria vaccine. In mammalian cell transfection experiments, PfCSP mRNA was well expressed and cell associated. In the transition to an in vivo murine model, lipid nanoparticle (LNP) encapsulation was applied to protect and deliver the mRNA to the cell translation machinery and supply adjuvant activity. The immunogenic effect of an array of factors was explored, such as formulation, dose, number, and interval of immunizations. PfCSP mRNA-LNP achieved sterile protection against infection with two P. berghei PfCSP transgenic parasite strains, with mRNA dose and vaccination interval having a greater effect on outcome. This investigation serves as the assessment of pre-erythrocytic malaria, PfCSP mRNA vaccine candidate resulting in sterile protection, with numerous factors affecting protective efficacy, making it a compelling candidate for further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...