Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 151(2): 838, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35232122

RESUMO

Due to the potential engineering needs, the passive tunable metasurfaces with a high performance equivalent to the active phased array is worthy of research. Here, a passive ultrathin metasurface unit composed of a piezoelectric composite structure (PCS) connected to an external capacitor, which can modulate the phase of the transmitted acoustic waves at a deep subwavelength scale only by controlling the external capacitor but without changing the structure, is proposed. Then, a tunable acoustic metasurface composed of 20 identical PCSs is introduced to realize three acoustic functions, beam steering, beam focusing, and tweezer-like beam generating, just by changing the external capacitors. The phase-control abilities of the PCS unit and three functions of the designed metasurface are proved both numerically and experimentally. This study provides the possibility to design ultrathin tunable acoustic metasurfaces with the ability of precise control and passive materials.

2.
Sci Rep ; 10(1): 981, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969667

RESUMO

The use of acoustic metamaterials with novel phenomena to design acoustic waveguides with special properties has obvious potential application value. Here, we propose a virtual soft boundary (VSB) model with high reflectivity and half cycle phase loss, which consists of an acoustic propagation layer and an acoustic metamaterial layer with tube arrays. Then the waveguide designed by the VSB is presented, and the numerical and experimental results show that it can separate acoustic waves at different frequencies without affecting the continuity and the flow of the medium in the space. The VSB waveguide can enrich the functions of acoustic waveguides and provide more application prospects.

3.
Phys Rev Lett ; 125(25): 255502, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416362

RESUMO

The topological states in quantum Hall insulators and quantum spin Hall insulators that emerge helical are considered nondissipative. However, in crystalline systems without spin-orbit couplings, the existing higher-order topological states are considered not helical, and the energy suffers from dissipation during propagation. In this work, by introducing the intrinsic pseudospin degree of freedom, we theoretically and experimentally present the existence of the helical higher-order topological states in the C_{6}-symmetric topological crystalline insulators based on the acoustic samples. Crucially, rather than considering the global interaction of the large bulk, we further intuitively reveal the impacts of the geometries of the crystal on the generation mechanisms and natural behaviors of these states based on the simple equivalent models. These results provide a versatile way for guiding the design of the desired topological materials.

4.
Sci Rep ; 6: 36936, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27833141

RESUMO

Acoustic illusion cloaks that create illusion effects by changing the scattered wave have many potential applications in a variety of scenarios. However, the experimental realization of generating three-dimensional (3D) acoustic illusions under detection of broadband signals still remains challenging despite the paramount importance for practical applications. Here we report the design and experimental demonstration of a 3D broadband cloak that can effectively manipulate the scattered field to generate the desired illusion effect near curved boundaries. The designed cloak simply comprises positive-index anisotropic materials, with parameters completely independent of either the cloaked object or the boundary. With the ability of manipulating the scattered field in 3D space and flexibility of applying to arbitrary geometries, our method may take a major step toward the real world application of acoustic cloaks and offer the possibilities of building advanced acoustic devices with versatile functionalities.

5.
Sci Rep ; 6: 28023, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27305973

RESUMO

We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy.

6.
Sci Rep ; 6: 19824, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26805712

RESUMO

We design and experimentally demonstrate a broadband yet compact acoustic diode (AD) by using an acoustic nonlinear material and a pair of gain and lossy materials. Due to the capabilities of maintaining the original frequency and high forward transmission while blocking backscattered wave, our design is closer to the desired features of a perfect AD and is promising to play the essential diode-like role in realistic acoustic systems, such as ultrasound imaging, noise control and nondestructive testing. Furthermore, our design enables improving the sensitivity and the robustness of device simultaneously by tailoring an individual structural parameter. We envision our design will take a significant step towards the realization of applicable acoustic one-way devices, and inspire the research of non-reciprocal wave manipulation in other fields.

7.
Sci Rep ; 5: 10966, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26077772

RESUMO

Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices.

8.
Sci Rep ; 3: 2546, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23986034

RESUMO

The introduction of metasurfaces has renewed the Snell's law and opened up new degrees of freedom to tailor the optical wavefront at will. Here, we theoretically demonstrate that the generalized Snell's law can be achieved for reflected acoustic waves based on ultrathin planar acoustic metasurfaces. The metasurfaces are constructed with eight units of a solid structure to provide discrete phase shifts covering the full 2π span with steps of π/4 by coiling up the space. By careful selection of the phase profiles in the transverse direction of the metasurfaces, some fascinating wavefront engineering phenomena are demonstrated, such as anomalous reflections, conversion of propagating waves into surface waves, planar aberration-free lens and nondiffracting Bessel beam generated by planar acoustic axicon. Our results could open up a new avenue for acoustic wavefront engineering and manipulations.

9.
Ultrasonics ; 50(6): 577-82, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20045166

RESUMO

The effective velocity of elastic waves for two-dimensional (2D) phononic crystals with rectangular lattice in the long-wavelength limit is studied by numerical simulations. It is demonstrated that, for all three propagating modes, not only the modes polarized in-plane (L wave and SV wave), but also the mode polarized out-plane (SH wave), the effective velocities are distinctly anisotropic and the slowness curves exhibit twofold symmetry. The anisotropy increases as the filling fraction increases or as the width to length ratio of the lattice decreases, and high anisotropy can be obtained in phononic crystals with large contrast between material parameters, which is much higher in rectangular lattice than in square lattice with the same material parameters. Owing to these dependences, the effective velocity can be controlled in engineering.


Assuntos
Acústica , Manufaturas , Anisotropia , Simulação por Computador
10.
Artigo em Inglês | MEDLINE | ID: mdl-19251523

RESUMO

We theoretically study the band structures of Lamb waves in one-dimensional phononic crystal plates consisting of piezoelectric ceramics placed periodically in epoxy with epoxy or piezoelectric ceramic substrate by the virtual plane wave expansion method. The dependences of the widths and starting frequencies of first band gaps (FBG) on the substrate's thickness, the filling fraction, and the lattice spacing are calculated for different materials of substrate under different electric boundary conditions, i.e., short circuit (SC) and open circuit (OC). The FBG width decreases gradually as the substrate's thickness increases and the FBG starting frequency increases progressively as the thickness increases on the whole. The FBG widths and starting frequencies with SC are always larger than with OC. Our research shows that it is possible to control the width and starting frequency of the FBG in the engineering according to need by choosing suitable values of the substrate's thickness, the filling fraction, and the lattice spacing.

11.
Artigo em Inglês | MEDLINE | ID: mdl-17718332

RESUMO

Theoretical studies are presented for the band structures of plate-mode waves in a one-dimensional (1-D) phononic crystal plate consisting of piezoelectric ceramics placed periodically in an epoxy substrate. The dependences of the widths and starting frequencies of first band gaps (FBG) on the filling fraction and the thickness to lattice pitch ratio are calculated for different polarizations of piezoelectric ceramics under different electric boundary conditions, i.e., short circuit (SC) and open circuit (OC). We found that the FBG always is broadened by polarizing piezoelectric ceramics, and the FBG widths with SC always are larger than that with OC for the same polarization. Our research shows that there are three critical parameters which determine the FBG: the polarized directions, the filling fraction, and the ratio of the plate thickness to the lattice pitch, respectively. Therefore, we can control the width and starting frequency of the FBG in the engineering according to need by choosing these parameters of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...