Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Apoptosis ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853202

RESUMO

Ovarian cancer is a malignant tumor originating from the ovary, characterized by its high mortality rate and propensity for recurrence. In some patients, especially those with recurrent cancer, conventional treatments such as surgical resection or standard chemotherapy yield suboptimal results. Consequently, there is an urgent need for novel anti-cancer therapeutic strategies. Ferroptosis is a distinct form of cell death separate from apoptosis. Ferroptosis inducers have demonstrated promising potential in the treatment of ovarian cancer, with evidence indicating their ability to enhance ovarian cancer cell sensitivity to cisplatin. However, resistance of cancer cells to ferroptosis still remains an inevitable challenge. Here, we analyzed genome-scale CRISPR-Cas9 loss-of function screens and identified PAX8 as a ferroptosis resistance protein in ovarian cancer. We identified PAX8 as a susceptibility gene in GPX4-dependent ovarian cancer. Depletion of PAX8 rendered GPX4-dependent ovarian cancer cells significantly more sensitive to GPX4 inhibitors. Additionally, we found that PAX8 inhibited ferroptosis in ovarian cancer cells. Combined treatment with a PAX8 inhibitor and RSL3 suppressed ovarian cancer cell growth, induced ferroptosis, and was validated in a xenograft mouse model. Further exploration of the molecular mechanisms underlying PAX8 inhibition of ferroptosis mutations revealed upregulation of glutamate-cysteine ligase catalytic subunit (GCLC) expression. GCLC mediated the ferroptosis resistance induced by PAX8 in ovarian cancer. In conclusion, our study underscores the pivotal role of PAX8 as a therapeutic target in GPX4-dependent ovarian cancer. The combination of PAX8 inhibitors such as losartan and captopril with ferroptosis inducers represents a promising new approach for ovarian cancer therapy.

2.
Apoptosis ; 29(5-6): 663-680, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598070

RESUMO

Cancer cachexia-associated muscle wasting as a multifactorial wasting syndrome, is an important factor affecting the long-term survival rate of tumor patients. Photobiomodulation therapy (PBMT) has emerged as a promising tool to cure and prevent many diseases. However, the effect of PBMT on skeletal muscle atrophy during cancer progression has not been fully demonstrated yet. Here, we found PBMT alleviated the atrophy of myotube diameter induced by cancer cells in vitro, and prevented cancer-associated muscle atrophy in mice bearing tumor. Mechanistically, the alleviation of muscle wasting by PBMT was found to be involved in inhibiting E3 ubiquitin ligases MAFbx and MuRF-1. In addition, transcriptomic analysis using RNA-seq and GSEA revealed that PI3K/AKT pathway might be involved in PBMT-prevented muscle cachexia. Next, we showed the protective effect of PBMT against muscle cachexia was totally blocked by AKT inhibitor in vitro and in vivo. Moreover, PBMT-activated AKT promoted FoxO3a phosphorylation and thus inhibiting the nucleus entry of FoxO3a. Lastly, in cisplatin-treated muscle cachexia model, PBMT had also been shown to ameliorate muscle atrophy through enhancing PI3K/AKT pathway to suppress MAFbx and MuRF-1 expression. These novel findings revealed that PBMT could be a promising therapeutic approach in treating muscle cachexia induced by cancer.


Assuntos
Caquexia , Proteína Forkhead Box O3 , Doenças Musculares , Neoplasias , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Síndrome de Emaciação , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/terapia , Doenças Musculares/etiologia , Doenças Musculares/metabolismo , Doenças Musculares/terapia , Neoplasias/complicações , Redes e Vias Metabólicas , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Síndrome de Emaciação/etiologia , Síndrome de Emaciação/metabolismo , Síndrome de Emaciação/terapia , Animais , Modelos Animais de Doenças , Camundongos , Linhagem Celular , Masculino , Camundongos Endogâmicos BALB C , Perfilação da Expressão Gênica
3.
PLoS Genet ; 20(4): e1011235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648200

RESUMO

Tumor-associated macrophages (TAM) subtypes have been shown to impact cancer prognosis and resistance to immunotherapy. However, there is still a lack of systematic investigation into their molecular characteristics and clinical relevance in different cancer types. Single-cell RNA sequencing data from three different tumor types were used to cluster and type macrophages. Functional analysis and communication of TAM subpopulations were performed by Gene Ontology-Biological Process and CellChat respectively. Differential expression of characteristic genes in subpopulations was calculated using zscore as well as edgeR and Wilcoxon rank sum tests, and subsequently gene enrichment analysis of characteristic genes and anti-PD-1 resistance was performed by the REACTOME database. We revealed the heterogeneity of TAM, and identified eleven subtypes and their impact on prognosis. These subtypes expressed different molecular functions respectively, such as being involved in T cell activation, apoptosis and differentiation, or regulating viral bioprocesses or responses to viruses. The SPP1 pathway was identified as a critical mediator of communication between TAM subpopulations, as well as between TAM and epithelial cells. Macrophages with high expression of SPP1 resulted in poorer survival. By in vitro study, we showed SPP1 mediated the interactions between TAM clusters and between TAM and tumor cells. SPP1 promoted the tumor-promoting ability of TAM, and increased PDL1 expression and stemness of tumor cells. Inhibition of SPP1 attenuated N-cadherin and ß-catenin expression and the activation of AKT and STAT3 pathway in tumor cells. Additionally, we found that several subpopulations could decrease the sensitivity of anti-PD-1 therapy in melanoma. SPP1 signal was a critical pathway of communication between macrophage subtypes. Some specific macrophage subtypes were associated with immunotherapy resistance and prognosis in some cancer types.


Assuntos
Neoplasias , Osteopontina , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Prognóstico , Neoplasias/imunologia , Neoplasias/genética , Osteopontina/genética , Osteopontina/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Análise de Célula Única , Transdução de Sinais , Macrófagos/imunologia , Macrófagos/metabolismo , Comunicação Celular/imunologia
4.
Acta Pharm Sin B ; 13(6): 2645-2662, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425043

RESUMO

Induction of cancer cell ferroptosis has been proposed as a potential treatment in several cancer types. Tumor-associated macrophages (TAMs) play a key role in promoting tumor malignant progression and therapy resistance. However, the roles and mechanisms of TAMs in regulating tumor ferroptosis is still unexplored and remains enigmatic. This study shows ferroptosis inducers has shown therapeutic outcomes in cervical cancer in vitro and in vivo. TAMs have been found to suppress cervical cancer cells ferroptosis. Mechanistically, macrophage-derived miRNA-660-5p packaged into exosomes are transported into cancer cells. In cancer cells, miRNA-660-5p attenuates ALOX15 expression to inhibit ferroptosis. Moreover, the upregulation of miRNA-660-5p in macrophages depends on autocrine IL4/IL13-activated STAT6 pathway. Importantly, in clinical cervical cancer cases, ALOX15 is negatively associated with macrophages infiltration, which also raises the possibility that macrophages reduce ALOX15 levels in cervical cancer. Moreover, both univariate and multivariate Cox analyses show ALOX15 expression is independent prognostic factor and positively associated with good prognosis in cervical cancer. Altogether, this study reveals the potential utility of targeting TAMs in ferroptosis-based treatment and ALOX15 as prognosis indicators for cervical cancer.

6.
Biomed Pharmacother ; 161: 114567, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36963362

RESUMO

Immune checkpoint blockade (ICB) therapy targeting the programmed death 1/programmed death-ligand 1 (PD-1/PD-L1) axis has achieved considerable success in treating a wide range of cancers. However, most patients with pancreatic cancer remain resistant to ICB. Moreover, there is a lack of optimal biomarkers for the prediction of response to this therapy. Palmitoylation is mediated by a family of 23 S-acyltransferases, termed zinc finger Asp-His-His-Cys-type palmitoyltransferases (ZDHHC), which precisely control various cancer-related protein functions and represent promising drug targets for cancer therapy. Here, we revealed that tumor cell-intrinsic ZDHHC9 was overexpressed in pancreatic cancer tissues and associated with impaired anti-tumor immunity. In syngeneic pancreatic tumor models, the knockdown of ZDHHC9 expression suppressed tumor progression and prolonged survival time of mice by modifying the immunosuppressive ('cold') to proinflammatory ('hot') tumor microenvironment. Furthermore, ZDHHC9 deficiency sensitized anti-PD-L1 immunotherapy mainly in a CD8+ T cell dependent manner. Lastly, we employed the ZDHHC9-siRNA nanoparticle system to efficiently silence ZDHHC9 in pancreatic tumors. Collectively, our findings indicate that ZDHHC9 overexpression in pancreatic tumors is a mechanism involved in the inhibition of host anti-tumor immunity and highlight the importance of inactivating ZDHHC9 as an effective immunotherapeutic strategy and booster for anti-PD-L1 therapy against pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Camundongos , Aciltransferases/genética , Imunoterapia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
7.
J Biomed Sci ; 30(1): 8, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707854

RESUMO

Chronic stress results in disturbances of body hormones through the neuroendocrine system. Cancer patients often experience recurrent anxiety and restlessness during disease progression and treatment, which aggravates disease progression and hinders treatment effects. Recent studies have shown that chronic stress-regulated neuroendocrine systems secret hormones to activate many signaling pathways related to tumor development in tumor cells. The activated neuroendocrine system acts not only on tumor cells but also modulates the survival and metabolic changes of surrounding non-cancerous cells. Current clinical evidences also suggest that chronic stress affects the outcome of cancer treatment. However, in clinic, there is lack of effective treatment for chronic stress in cancer patients. In this review, we discuss the main mechanisms by which chronic stress regulates the tumor microenvironment, including functional regulation of tumor cells by stress hormones (stem cell-like properties, metastasis, angiogenesis, DNA damage accumulation, and apoptotic resistance), metabolic reprogramming and immune escape, and peritumor neuromodulation. Based on the current clinical treatment framework for cancer and chronic stress, we also summarize pharmacological and non-pharmacological therapeutic approaches to provide some directions for cancer therapy.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Transdução de Sinais , Progressão da Doença , Hormônios/farmacologia , Microambiente Tumoral
8.
Apoptosis ; 28(1-2): 81-107, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36399287

RESUMO

It has been 10 years since the concept of ferroptosis was put forward and research focusing on ferroptosis has been increasing continuously. Ferroptosis is driven by iron-dependent lipid peroxidation, which can be antagonized by glutathione peroxidase 4 (GPX4), ferroptosis inhibitory protein 1 (FSP1), dihydroorotate dehydrogenase (DHODH) and Fas-associated factor 1 (FAF1). Various cellular metabolic events, including lipid metabolism, can modulate ferroptosis sensitivity. It is worth noting that the reprogramming of lipid metabolism in cancer cells can promote the occurrence and development of tumors. The metabolic flexibility of cancer cells opens the possibility for the coordinated targeting of multiple lipid metabolic pathways to trigger cancer cells ferroptosis. In addition, cancer cells must obtain immortality, escape from programmed cell death including ferroptosis, to promote cancer progression, which provides new perspectives for improving cancer therapy. Targeting the vulnerability of ferroptosis has received attention as one of the significant possible strategies to treat cancer given its role in regulating tumor cell survival. We review the impact of iron and lipid metabolism on ferroptosis and the potential role of the crosstalk of lipid metabolism reprogramming and ferroptosis in antitumor immunity and sum up agents targeting lipid metabolism and ferroptosis for cancer therapy.


Assuntos
Ferroptose , Neoplasias , Humanos , Apoptose , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Neoplasias/metabolismo , Ferro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
9.
Apoptosis ; 27(11-12): 946-960, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36028785

RESUMO

Developing individualized therapies for different renal cell carcinoma patients is pivotal for improving the efficacy of immunotherapy. It has been reported that ferroptosis is involved in T cell-mediated anti-tumor immunity, and that therapeutic approaches targeting tumor ferroptosis pathway in combination with immune checkpoint blockade drugs improve the efficacy of cancer immunotherapy. This study focused specifically on ferroptosis genes to identify novel biomarkers that reflect prognosis in different renal cell carcinoma subtypes. LASSO algorithm and multivariate Cox regression were initiated for identifying ferroptosis-related multigene risk signature (FRGsig) and established a FRGsig score model. We used multiple tumor microenvironment gene signatures and methods to infer tumor microenvironment status and immune cell invasion levels. Our study found that high FRGsig score was associated with poor prognosis in patients with predominant histologic subtypes of renal cell carcinoma. And high FRGsig score samples had higher levels of anti-tumor immunity cells infiltration, and there was a feedback mechanism whereby anti-tumor inflammation promoted the recruitment or differentiation of immunosuppressive cells. FRGsig was a potential biomarker for predicting the response to immune checkpoint blockade therapy in kidney clear cell carcinoma and kidney papillary cell carcinoma, and the kidney papillary cell carcinoma patients with high FRGsig was associated with better response to anti-VEGF therapy. Our findings provided further insights into assessing immunotherapy sensitivity of predominant histologic subtypes of renal cell carcinoma. FRGsig might be a potential biomarker for predicting the efficacy of angiogenic blocking drugs or immune checkpoint inhibitors in different renal cell carcinoma subtypes, enabling more precise patient selection.


Assuntos
Carcinoma de Células Renais , Ferroptose , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Ferroptose/genética , Inibidores de Checkpoint Imunológico , Apoptose , Imunoterapia , Microambiente Tumoral/genética , Neoplasias Renais/genética , Neoplasias Renais/terapia
10.
Mol Ther Nucleic Acids ; 25: 613-637, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34589282

RESUMO

Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.

11.
Cancer Lett ; 523: 57-71, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34563641

RESUMO

High fluence low-level laser (HF-LLL), a mitochondria-targeted tumour phototherapy, results in oxidative damage and apoptosis of tumour cells, as well as damage to normal tissue. To circumvent this, the therapeutic effect of low fluence LLL (LFL), a non-invasive and drug-free therapeutic strategy, was identified for tumours and the underlying molecular mechanisms were investigated. We observed that LFL enhanced antigen-specific immune response of macrophages and dendritic cells by upregulating MHC class II, which was induced by mitochondrial reactive oxygen species (ROS)-activated signalling, suppressing tumour growth in both CD11c-DTR and C57BL/6 mice. Mechanistically, LFL upregulated MHC class II in an MHC class II transactivator (CIITA)-dependent manner. LFL-activated protein kinase C (PKC) promoted the nuclear translocation of CIITA, as inhibition of PKC attenuated the DNA-binding efficiency of CIITA to MHC class II promoter. CIITA mRNA and protein expression also improved after LFL treatment, characterised by direct binding of Src and STAT1, and subsequent activation of STAT1. Notably, scavenging of ROS downregulated LFL-induced Src and PKC activation and antagonised the effects of LFL treatment. Thus, LFL treatment altered the adaptive immune response via the mitochondrial ROS-activated signalling pathway to control the progress of neoplastic disease.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Terapia com Luz de Baixa Intensidade/métodos , Neoplasias Experimentais/terapia , Proteína Quinase C/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Quinases da Família src/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Apresentação de Antígeno , Células Dendríticas/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Proteínas Nucleares/fisiologia , Fator de Transcrição STAT1/fisiologia , Transativadores/fisiologia
12.
Stem Cell Reports ; 16(6): 1568-1583, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019818

RESUMO

Photobiomodulation therapy (PBMT) has shown encouraging results in the treatment of hair loss. However, the mechanism by which PBMT controls cell behavior to coordinate hair cycle is unclear. Here, PBMT is found to drive quiescent hair follicle stem cell (HFSC) activation and alleviate hair follicle atrophy. Mechanistically, PBMT triggers a new hair cycle by upregulating ß-CATENIN expression in HFSCs. Loss of ß-Catenin (Ctnnb1) in HFSCs blocked PBMT-induced hair regeneration. Additionally, we show PBMT-induced reactive oxygen species (ROS) activate the PI3K/AKT/GSK-3ß signaling pathway to inhibit proteasome degradation of ß-CATENIN in HFSCs. Furthermore, PBMT promotes the expression and secretion of WNTs in skin-derived precursors (SKPs) to further activate the ß-CATENIN signal in HFSCs. By contrast, eliminating ROS or inhibiting WNT secretion attenuates the activation of HFSCs triggered by PBMT. Collectively, our work suggests that PBMT promotes hair regeneration through synergetic activation of ß-CATENIN in HFSCs by ROS and paracrine WNTs by SKPs.


Assuntos
Alopecia/terapia , Folículo Piloso/metabolismo , Terapia com Luz de Baixa Intensidade/métodos , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Técnicas de Inativação de Genes/métodos , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Regeneração
13.
Biochem J ; 478(9): 1663-1688, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33970218

RESUMO

Cancer cachexia often occurs in malignant tumors and is a multifactorial and complex symptom characterized by wasting of skeletal muscle and adipose tissue, resulting in weight loss, poor life quality and shorter survival. The pathogenic mechanism of cancer cachexia is complex, involving a variety of molecular substrates and signal pathways. Advancements in understanding the molecular mechanisms of cancer cachexia have provided a platform for the development of new targeted therapies. Although recent outcomes of early-phase trials have showed that several drugs presented an ideal curative effect, monotherapy cannot be entirely satisfactory in the treatment of cachexia-associated symptoms due to its complex and multifactorial pathogenesis. Therefore, the lack of definitive therapeutic strategies for cancer cachexia emphasizes the need to develop a better understanding of the underlying mechanisms. Increasing evidences show that the progression of cachexia is associated with metabolic alternations, which mainly include excessive energy expenditure, increased proteolysis and mitochondrial dysfunction. In this review, we provided an overview of the key mechanisms of cancer cachexia, with a major focus on muscle atrophy, adipose tissue wasting, anorexia and fatigue and updated the latest progress of pharmacological management of cancer cachexia, thereby further advancing the interventions that can counteract cancer cachexia.


Assuntos
Anorexia/tratamento farmacológico , Antineoplásicos/uso terapêutico , Caquexia/tratamento farmacológico , Fadiga/tratamento farmacológico , Atrofia Muscular/tratamento farmacológico , Neoplasias/tratamento farmacológico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Anorexia/complicações , Anorexia/metabolismo , Anorexia/mortalidade , Anti-Inflamatórios/uso terapêutico , Estimulantes do Apetite/uso terapêutico , Caquexia/complicações , Caquexia/metabolismo , Caquexia/mortalidade , Fadiga/complicações , Fadiga/metabolismo , Fadiga/mortalidade , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/complicações , Atrofia Muscular/metabolismo , Atrofia Muscular/mortalidade , Neoplasias/complicações , Neoplasias/metabolismo , Neoplasias/mortalidade , Qualidade de Vida , Análise de Sobrevida , Congêneres da Testosterona/uso terapêutico , Redução de Peso/efeitos dos fármacos
14.
Aging (Albany NY) ; 13(7): 10015-10033, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33795530

RESUMO

Ameliorating hyperglycemia and insulin resistance are major therapeutic strategies for type 2 diabetes. Previous studies have indicated that photobiomodulation therapy (PBMT) attenuates metabolic abnormalities in insulin-resistant adipose cells and tissues. However, it remains unclear whether PBMT ameliorates glucose metabolism in skeletal muscle in type 2 diabetes models. Here we showed that PBMT reduced blood glucose and insulin resistance, and reversed metabolic abnormalities in skeletal muscle in two diabetic mouse models. PBMT accelerated adenosine triphosphate (ATP) and reactive oxygen species (ROS) generation by elevating cytochrome c oxidase (CcO) activity. ROS-induced activation of phosphatase and tensin homolog (PTEN)/ protein kinase B (AKT) signaling after PBMT promoted glucose transporter GLUT4 translocation and glycogen synthase (GS) activation, accelerating glucose uptake and glycogen synthesis in skeletal muscle. CcO subunit III deficiency, ROS elimination, and AKT inhibition suppressed the PBMT effects of glucose metabolism in skeletal muscle. This study indicated amelioration of glucose metabolism after PBMT in diabetic mouse models and revealed the metabolic regulatory effects and mechanisms of PBMT on skeletal muscle.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hiperglicemia/terapia , Resistência à Insulina/fisiologia , Terapia com Luz de Baixa Intensidade , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Glucose/metabolismo , Hiperglicemia/metabolismo , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Resultado do Tratamento
15.
Eur J Pharm Biopharm ; 163: 60-71, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33775853

RESUMO

Cisplatin is a highly effective antitumor drug generally used in the treatment of solid malignant tumors. However, cisplatin causes severe side effects such as bone marrow depression, nephrotoxicity, and ototoxicity, thus limiting its clinical application. The incidence of ototoxicity induced by cisplatin ranges from 20% to 70%, and it usually manifests as a progressive, bilateral and irreversible hearing loss. Although the etiology of cisplatin-induced ototoxicity remains unclear, an increasing body of evidence suggests that the ototoxicity of cisplatin is mainly related to the production of reactive oxygen species and activation of apoptotic pathway in cochlear tissues. Many drugs have been well proved to protect cisplatin-induced hearing loss in vitro and in vivo. However, the anti-tumor effect of cisplatin is also weakened by systemic administration of those drugs for hearing protection, especially antioxidants. Therefore, establishing a local administration strategy contributes to the otoprotection without affecting the effect of cisplatin. This review introduces the pathology of ototoxicity caused by cisplatin, and focuses on recent developments in the mechanisms and protective strategies of cisplatin-induced ototoxicity.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Perda Auditiva/induzido quimicamente , Neoplasias/tratamento farmacológico , Substâncias Protetoras/administração & dosagem , Administração Tópica , Animais , Apoptose/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Cóclea/patologia , Modelos Animais de Doenças , Perda Auditiva/epidemiologia , Perda Auditiva/patologia , Perda Auditiva/prevenção & controle , Humanos , Incidência , Espécies Reativas de Oxigênio/metabolismo
16.
Biochem Biophys Res Commun ; 558: 216-223, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33008584

RESUMO

BET inhibitor (BETi) has potential therapeutic effects on human cancer especially in breast cancer. However, the detailed mechanisms remain unclear. Herein, we found that BETi JQ1 and I-BET-151 (I-BET) activated ATF2 through JNK1/2 pathway in breast cancer cells MDA-MB-231 (MB-231). In addition, overexpression of ATF2 blocked the reduction of cell viability induced by JQ1 or I-BET in breast cancer MB-231 and BT-549 cells, cervical cancer HeLa cells and lung cancer A549 cells. The induction of cell death by BETi was also attenuated by ATF2 in MB-231 and BT-549 cells. By contrast, depletion of ATF2 increased cancer cell sensitivity to BETi. In MB-231 cells xenograft model, ATF2 significantly inhibited the anti-tumor effects of JQ1. By detection of the oxidized form gluthione, malondialdehyde and lipid ROS, we showed that overexpression of ATF2 inhibited ferroptosis induced by BETi, whereas depletion of ATF2 promoted ferroptosis by BETi. Furthermore, the underlying mechanisms of ATF2-reduced ferroptosis were investigated. Overexpressed and depleted ATF2 were found to significantly upregulate and downregulate NRF2 protein and mRNA expression, respectively. The significantly positive correlations between NRF2 and ATF2 gene expression were found in breast, lung and cervical cancer tissues from TCGA database. In NRF2-depleted MB-231 cells, ATF2 failed to attenuate JQ1-stimulated ferroptosis. All these results suggested that ATF2 inhibited BETi-induced ferroptosis by increasing NRF2 expression. Altogether, our findings illustrated ATF2 suppressed ani-tumor effects of BETi in a negative feedback manner by attenuating ferroptosis. BETi combined with ATF2 or NRF2 inhibitor might be a novel strategy for treatment of human cancer.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Antineoplásicos/farmacologia , Ferroptose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas/antagonistas & inibidores , Células A549 , Fator 2 Ativador da Transcrição/deficiência , Fator 2 Ativador da Transcrição/genética , Animais , Azepinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Nus , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Cell Physiol ; 236(5): 3445-3465, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33200401

RESUMO

Tumor-associated macrophages (TAMs) in solid tumors exert protumor activities by releasing cytokines or growth factors into the tumor microenvironment. Increasing studies have also shown that TAMs play a key role in tumor progression, such as tumor angiogenesis, immunosuppression, cell proliferation, migration, invasion, and metastasis. A large body of evidence shows that the abundance of TAMs in solid tumors is correlated with poor disease prognosis and resistance to therapies. Therefore, targeting TAMs in solid tumors is considered to be a promising immunotherapeutic strategy. At present, the therapeutic strategies of targeting macrophages mainly include limiting monocyte recruitment, depletion strategies, promoting macrophage phagocytic activity, and induction of macrophage reprogramming. Additionally, targeting TAMs in combination with conventional therapies has been demonstrated to be a promising therapeutic strategy in solid tumors. In the present review, we summarized various TAMs-targeting therapeutic strategies for treating solid tumors. This review also discusses the challenges for targeting TAMs as tumor treatments, the obstacles in clinical trials, and the perspective for the future development of TAMs-targeting therapies for various cancers.


Assuntos
Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Proliferação de Células/fisiologia , Humanos , Macrófagos/metabolismo , Neoplasias/imunologia , Neovascularização Patológica/patologia
18.
J Hematol Oncol ; 13(1): 159, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239065

RESUMO

Inhibiting cell survival and inducing cell death are the main approaches of tumor therapy. Autophagy plays an important role on intracellular metabolic homeostasis by eliminating dysfunctional or unnecessary proteins and damaged or aged cellular organelles to recycle their constituent metabolites that enable the maintenance of cell survival and genetic stability and even promotes the drug resistance, which severely limits the efficacy of chemotherapeutic drugs. Currently, targeting autophagy has a seemingly contradictory effect to suppress and promote tumor survival, which makes the effect of targeting autophagy on drug resistance more confusing and fuzzier. In the review, we summarize the regulation of autophagy by emerging ways, the action of targeting autophagy on drug resistance and some of the new therapeutic approaches to treat tumor drug resistance by interfering with autophagy-related pathways. The full-scale understanding of the tumor-associated signaling pathways and physiological functions of autophagy will hopefully open new possibilities for the treatment of tumor drug resistance and the improvement in clinical outcomes.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Proteína Beclina-1/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Biochem Biophys Res Commun ; 533(4): 1122-1128, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33036752

RESUMO

Skeletal muscle and white adipose tissue are important organs of glucose-lipid metabolism. However, excessive lipolysis and free fatty acids (FFA) release in adipocytes elevate plasma FFA, leading to insulin resistance in skeletal muscle. Here, we investigated effects of insulin-resistant adipocytes on skeletal muscle in vitro by simulating body environment using a transwell coculture method. Insulin-resistant 3T3-L1 adipocytes increased lipolysis and FFA release, which reduced insulin sensitivity in the cocultured C2C12 myotubes. Rosiglitazone (RSG) decreased excessive lipolysis by reducing expression of adipose triglyceride lipase (ATGL) and activity of hormone-sensitive lipase (HSL), which led to decrease of FFA release from insulin-resistant 3T3-L1 adipocytes. Meanwhile, insulin resistance in C2C12 myotubes cocultured with insulin-resistant 3T3-L1 adipocytes was ameliorated after RSG treatment. Taken together, our present study provided direct evidence to better understand insulin resistance between skeletal muscle and adipose tissue in type 2 diabetes.


Assuntos
Adipócitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Assialoglicoproteínas/genética , Assialoglicoproteínas/metabolismo , Comunicação Celular/fisiologia , Técnicas de Cocultura , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos não Esterificados/sangue , Hipoglicemiantes/farmacologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lipase/genética , Lipase/metabolismo , Lipólise/efeitos dos fármacos , Lipólise/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Rosiglitazona/farmacologia , Esterol Esterase/genética , Esterol Esterase/metabolismo
20.
Biochem Pharmacol ; 180: 114126, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32603665

RESUMO

BET inhibitors (BETi) exhibit a strong anti-tumor activity in triple-negative breast cancer (TNBC). However, BETi resistance has been reported in TNBC. The mechanisms of resistance have not been demonstrated. Tumor-associated macrophages (TAMs) are frequently involved in cancer cells resistance to chemotherapy, also associated with poor prognosis in TNBC. However, the role of TAMs in BETi resistance remains unknown. Here, we found that BETi JQ1 and I-BET151 exerted anti-tumor effects in TNBC by decreasing IKBKE expression to attenuate NF-κB signaling. TAMs have been reported to associate with chemoresistance in breast cancer. Here, we firstly found that TNBC-stimulated TAMs activated NF-κB signaling by upregulating IKBKE expression to enhance breast cancer cells resistance to BETi. The IKBKE levels were also proved to be higher in clinical TNBC tissues than Non-TNBC tissues, suggesting feedback induction of IKBKE expression by TNBC-stimulated TAMs in TNBC. Moreover, the induction of IKBKE by TAMs in TNBC cells was identified to be associated with STAT3 signaling, which was activated by TAM-secreted IL-6 and IL-10. Lastly, the combination of inhibitors of BET and STAT3 exerted a synergistic inhibition effects in TAM-cocultured or TAM CM-treated TNBC cells in vitro and in vivo. Altogether, our findings illustrated TNBC-activated macrophages conferred TNBC cells resistance to BETi via IL-6 or IL-10/STAT3/IKBKE/NF-κB axis. Blockade of IKBKE or double inhibition of BET and STAT3 might be a novel strategy for treatment of TNBC.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quinase I-kappa B/genética , Proteínas/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Macrófagos Associados a Tumor/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Células MCF-7 , Camundongos Nus , Células THP-1 , Neoplasias de Mama Triplo Negativas/patologia , Macrófagos Associados a Tumor/patologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...