Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 11: 619016, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424642

RESUMO

OBJECTIVE: We investigated the effects of combined balance and strength training on measures of balance and muscle strength in older women with a history of falls. METHODS: Twenty-seven older women aged 70.4 ± 4.1 years (age range: 65 to 75 years) were randomly allocated to either an intervention (IG, n = 12) or an active control (CG, n = 15) group. The IG completed 8 weeks combined balance and strength training program with three sessions per week including visual biofeedback using force plates. The CG received physical therapy and gait training at a rehabilitation center. Training volumes were similar between the groups. Pre and post training, tests were applied for the assessment of muscle strength (weight-bearing squat [WBS] by measuring the percentage of body mass borne by each leg at different knee flexions [0°, 30°, 60°, and 90°], sit-to-stand test [STS]), and balance. Balance tests used the modified clinical test of sensory interaction (mCTSIB) with eyes closed (EC) and opened (EO), on stable (firm) and unstable (foam) surfaces as well as spatial parameters of gait such as step width and length (cm) and walking speed (cm/s). RESULTS: Significant group × time interactions were found for different degrees of knee flexion during WBS (0.0001 < p < 0.013, 0.441 < d < 0.762). Post hoc tests revealed significant pre-to-post improvements for both legs and for all degrees of flexion (0.0001 < p < 0.002, 0.697 < d < 1.875) for IG compared to CG. Significant group × time interactions were found for firm EO, foam EO, firm EC, and foam EC (0.006 < p < 0.029; 0.302 < d < 0.518). Post hoc tests showed significant pre-to-post improvements for both legs and for all degrees of oscillations (0.0001 < p < 0.004, 0.753 < d < 2.097) for IG compared to CG. This study indicates that combined balance and strength training improved percentage distribution of body weight between legs at different conditions of knee flexion (0°, 30°, 60°, and 90°) and also decreased the sway oscillation on a firm surface with eyes closed, and on foam surface (with eyes opened or closed) in the IG. CONCLUSION: The higher positive effects of training seen in standing balance tests, compared with dynamic tests, suggests that balance training exercises including lateral, forward, and backward exercises improved static balance to a greater extent in older women.

2.
J Hum Kinet ; 67: 5-15, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31523302

RESUMO

Investigations of trunk strength with high-level athletes are limited. The purpose of this study was to compare maximal concentric isokinetic trunk extension and flexion torque, power, and strength ratios between high-level weightlifters (n = 20), wrestlers (n = 20) and a control (n = 25) population. Isokinetic dynamometry was used to evaluate peak torque, power and strength ratios during seated trunk extension/flexion actions at 60°/s and 180°/s. There were no significant anthropometric differences between groups. Overall, trunk isokinetic force variables as a function of the increase in angular velocity, showed a decrease in peak torque, but an increase in power (athletes and controls). Compared to the control group, athletes demonstrated significantly higher trunk extension torque (+67.05 N·m, ES = 0.81) and power (+49.28 N·m, ES = 0.82) at 60°/s and 180°/s, respectively. Athletes produced significantly greater trunk flexion-extension ratios at 60°/s and 180°/s (ES = 0.80-0.47) than controls. Weightlifters and wrestlers exhibited significantly higher extensor than flexor torque at all angular velocities. Weightlifters demonstrated greater torque (ES = 0.79) than wrestlers at 60°/s. The wrestlers' average power was significantly higher (ES = 0.43) than weightlifters at 180°/s. There were no significant ratio differences between wrestlers (66.23%) and weightlifters (72.06%). Weightlifters had stronger extensor muscles at 60°/s, whereas wrestlers had higher power at 180°/s for extensor muscles. It was postulated that the extensor muscles were stronger than the flexors to ensure trunk stabilisation, and for prevention of injuries. These differences seem to be associated to the movements that occur in each sport in terms of both muscle actions and contractile forces.

3.
Front Physiol ; 10: 409, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031638

RESUMO

INTRODUCTION: There is controversy in the literature in regards of the link between training load and injury rate. Thus, the aims of this non-interventional study were to evaluate relationships between pre-season training load with biochemical markers, injury incidence and performance during the first month of the competitive period in professional soccer players. MATERIALS AND METHODS: Healthy professional soccer players were enrolled in this study over two pre-season periods. Data sets were available from 26 players during the first season (2014-2015) and 24 players during the second season (2015-2016) who completed two pre-season periods (6 weeks each). External training load was assessed from all athletes during training using Global Positioning System (GPS). Internal training load was monitored after each training session using rate of perceived exertion (RPE). Before and after each pre-season, blood samples were taken to determine plasma lactate dehydrogenase (LDH), creatine kinase (CK) and C-reactive protein (CRP). Injury incidence and overall performance (ranking of the team after the first five official games of the championship) were recorded for both seasons separately. RESULTS: There was no statistically significant difference in mean RPE values of the two-preparation periods (2737 ± 452 and 2629 ± 786 AU, p = 0.492). The correlational analysis did not reveal significant associations between internal and external training load (RPE and GPS data) and biological markers. There was a significant positive correlation between RPE and LDH during the 2015/2016 season (r = 0.974, p = 0.001). In addition, a significant negative correlation was found between total distance >20 km/h and CRP during the 2015-2016 season (r = -0.863, p = 0.027). The injury rates for the two seasons were 1.76 and 1.06 per 1000 h exposure for the 2014-2015 and 2015-2016 seasons, respectively (p = 0.127). CONCLUSION: Our study showed that pre-season training load is not associated with overall team performance. This association is most likely multifactorial and other factors (e.g., technical and tactical level of the team, opponents, environment) may play an important role for the collective team performance. Our findings may help coaches to better prepare their athletes during pre-season.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...