Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36194435

RESUMO

In the quest to develop sustainable and environmentally friendly materials, cellulose is a promising alternative to synthetic polymers. However, native cellulose, in contrast to many synthetic polymers, cannot be melt-processed with traditional techniques because, upon heating, it degrades before it melts. One way to improve the thermoplasticity of cellulose, in the form of cellulose fibers, is through chemical modification, for example, to dialcohol cellulose fibers. To better understand the importance of molecular interactions during melt processing of such modified fibers, we undertook a molecular dynamics study of dialcohol cellulose nanocrystals with different degrees of modification. We investigated the structure of the nanocrystals as well as their interactions with a neighboring nanocrystal during mechanical shearing, Our simulations showed that the stress, interfacial stiffness, hydrogen-bond network, and cellulose conformations during shearing are highly dependent on the degree of modification, water layers between the crystals, and temperature. The melt processing of dialcohol cellulose with different degrees of modification and/or water content in the samples was investigated experimentally by fiber extrusion with water used as a plasticizer. The melt processing was easier when increasing the degree of modification and/or water content in the samples, which was in agreement with the conclusions derived from the molecular modeling. The measured friction between the two crystals after the modification of native cellulose to dialcohol cellulose, in some cases, halved (compared to native cellulose) and is also reduced with increasing temperature. Our results demonstrate that molecular modeling of modified nanocellulose fibers can provide fundamental information on the structure-property relationships of these materials and thus is valuable for the development of new cellulose-based biomaterials.

2.
J Chem Theory Comput ; 16(6): 3699-3711, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32403923

RESUMO

Self-assembly is ubiquitous in nature and underlies the formation of many complex systems from the molecular to the macroscopic scale. Kern-Frenkel-like patchy particles are powerful models to investigate this phenomenon by computational methods such as Monte Carlo or molecular dynamics simulations. However, in these models the interactions are mediated by circular patches at the particle surface, which can be hardly mapped to realistic systems, containing for instance faceted particles with rectangular surfaces. In this paper we extend the model to take into account such geometries, and we use it to build a supra coarse-grained model of the cellulose nanocrystal where the interactions are parametrized against all-atomistic molecular dynamics simulations. The formation of cholesteric ribbons and defects in cholesteric droplets of the cellulose nanocrystal are investigated and confirm experimental behavior reported in the literature. The flexibility of this new patchy particle model makes it a powerful tool to develop supra coarse-grained models of self-assembly for large space and time scales and should find a broad range of applications for self-assembly in chemical and biological systems.

3.
ACS Appl Mater Interfaces ; 10(34): 29115-29126, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30070463

RESUMO

Deposition dynamics, crystallization, molecular packing, and electronic mobility of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films are affected by the nature of the substrate. Computational microscopy has been carried out to reveal the morphology-substrate dependence for PEDOT thin films doped with molecular tosylate deposited on different substrates including graphite, Si3N4, silicon, and amorphous SiO2. It is shown that the substrate is instrumental in formation of the lamellar structure. PEDOT films on the ordered substrates (graphite, Si3N4, and silicon) exhibit preferential face-on orientation, with graphite showing the most ordered and pronounced face-on packing. In contrast, PEDOT on amorphous SiO2 exhibits the dominant edge-on orientation, except in the dry state where both packings are equally presented. The role of water and the porosity of the substrate in formation of the edge-on structure on SiO2 is outlined. On the basis of the calculated morphology, the multiscale calculations of the electronic transport and percolative analysis are performed outlining how the character of the substrate affects the electron mobility. It is demonstrated that good crystallinity (PEDOT on graphite substrate) and high content of edge-on (PEDOT on SiO2 substrate) are not enough to achieve the highest electrical in-plane mobility. Instead, the least ordered material with lower degree of the edge-on content (PEDOT on silicon substrate) provides the highest mobility because it exhibits an efficient network of π-π stacked chain extending throughout the entire sample.

4.
Macromol Rapid Commun ; 39(4)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29210526

RESUMO

The spectra of conducting polymers obtained using ultraviolet photoelectron spectroscopy (UPS) exhibit a typical broadening of the tail σUPS ≈ 1 eV, which by an order of magnitude exceeds a commonly accepted value of the broadening of the tail of the density of states σDOS ≈ 0.1 eV obtained using transport measurements. In this work, an origin of this anomalous broadening of the tail of the UPS spectra in a doped conducting polymer, PEDOT (poly(3,4-ethylenedioxythiophene)), is discussed. Based on the semiempirical approach and using a realistic morphological model, the density of valence states in PEDOT doped with molecular counterions is computed. It is shown that due to a disordered character of the material with randomly distributed counterions, the localized charge carriers in PEDOT crystallites experience spatially varying electrostatic potential. This leads to spatially varying local vacuum levels and binding energies. Taking this variation into account the UPS spectrum is obtained with the broadening of the tail comparable to the experimentally observed one. The results imply that the observed broadening of the tail of the UPS spectra in PEDOT provides information about a disordered spatially varying potential in the material rather than the broadening of the DOS itself.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros/química , Espectroscopia Fotoeletrônica , Eletricidade Estática
5.
Sci Adv ; 3(12): eaao3659, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29260000

RESUMO

Conjugated polymer-polyelectrolyte blends combine and couple electronic semiconductor functionality with selective ionic transport, making them attractive as the active material in organic biosensors and bioelectronics, electrochromic displays, neuromorphic computing, and energy conversion and storage. Although extensively studied and explored, fundamental knowledge and accurate quantitative models of the coupled ion-electron functionality and transport are still lacking to predict the characteristics of electrodes and devices based on these blends. We report on a two-phase model, which couples the chemical potential of the holes, in the conjugated polymer, with the electric double layer residing at the conjugated polymer-polyelectrolyte interface. The model reproduces a wide range of experimental charging and transport data and provides a coherent theoretical framework for the system as well as local electrostatic potentials, energy levels, and charge carrier concentrations. This knowledge is crucial for future developments and optimizations of bioelectronic and energy devices based on the electronic-ionic interaction within these materials.

6.
Nanoscale ; 9(36): 13717-13724, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28884179

RESUMO

A recently synthesized self-doped conducting oligomer, salt of bis[3,4-ethylenedioxythiophene]3thiophene butyric acid, ETE-S, is a novel promising material for green energy applications. Recently, it has been demonstrated that it can polymerize in vivo, in plant systems, leading to a formation of long-range conducting wires, charge storage and supercapacitive behaviour of living plants. Here we investigate the morphology of ETE-S combining the experimental characterisation using Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) and atomistic molecular dynamics (MD) simulations. The GIWAXS measurements reveal a formation of small crystallites consisting of π-π stacked oligomers (with the staking distance 3.5 Å) that are further organized in h00 lamellae. These experimental results are confirmed by MD calculations, where we calculated the X-ray diffraction pattern and the radial distribution function for the distance between ETE-S chains. Our MD simulations also demonstrate the formation of the percolative paths for charge carriers that extend throughout the whole structure, despite the fact that the oligomers are short (6-9 rings) and crystallites are thin along the π-π stacking direction, consisting of only two or three π-π stacked oligomers. The existence of the percolative paths explains the previously observed high conductivity in in vivo polymerized ETE-S. We also explored the geometrical conformation of ETE-S oligomers and the bending of their aliphatic chains as a function of the oligomer lengths.

7.
J Phys Chem B ; 121(16): 4299-4307, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28380297

RESUMO

Morphology of the conducting polymer PEDOT:TOS (poly(3,4-ethylenedioxythiophene) doped with molecular tosylate) and its crystallization in aqueous solution were studied using atomistic molecular dynamics simulations. It was found that (a) PEDOT comprises crystallite aggregates consisting of 3-6 π-π stacked chains. The crystallites are linked by interpenetrating π-π stacked chains such that percolative paths in the structure are formed. (b) The size of the crystallites depends on the water content, but the π-π stacking distance is practically independent of the chain length, charge concentration and water content.

8.
Proc Natl Acad Sci U S A ; 114(11): 2807-2812, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242683

RESUMO

Electronic plants, e-Plants, are an organic bioelectronic platform that allows electronic interfacing with plants. Recently we have demonstrated plants with augmented electronic functionality. Using the vascular system and organs of a plant, we manufactured organic electronic devices and circuits in vivo, leveraging the internal structure and physiology of the plant as the template, and an integral part of the devices. However, this electronic functionality was only achieved in localized regions, whereas new electronic materials that could be distributed to every part of the plant would provide versatility in device and circuit fabrication and create possibilities for new device concepts. Here we report the synthesis of such a conjugated oligomer that can be distributed and form longer oligomers and polymer in every part of the xylem vascular tissue of a Rosa floribunda cutting, forming long-range conducting wires. The plant's structure acts as a physical template, whereas the plant's biochemical response mechanism acts as the catalyst for polymerization. In addition, the oligomer can cross through the veins and enter the apoplastic space in the leaves. Finally, using the plant's natural architecture we manufacture supercapacitors along the stem. Our results are preludes to autonomous energy systems integrated within plants and distribute interconnected sensor-actuator systems for plant control and optimization.


Assuntos
Eletrônica , Plantas/química , Polimerização , Humanos , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Xilema/química , Xilema/crescimento & desenvolvimento
9.
Anal Chim Acta ; 907: 45-53, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26803001

RESUMO

The monitoring of phenolic compounds in wastewaters in a simple manner is of great importance for environmental control. Here, a novel screen printed laccase-based microband array for in situ, total phenol estimation in wastewaters and for water quality monitoring without additional sample pre-treatment is presented. Numerical simulations using the finite element method were utilized for the characterization of micro-scale graphite electrodes. Anodization followed by covalent modification was used for the electrode functionalization with laccase. The functionalization efficiency and the electrochemical performance in direct and catechol-mediated oxygen reduction were studied at the microband laccase electrodes and compared with macro-scale electrode structures. The reduction of the dimensions of the enzyme biosensor, when used under optimized conditions, led to a significant improvement in its analytical characteristics. The elaborated microsensor showed fast responses towards catechol additions to tap water - a weakly supported medium - characterized by a linear range from 0.2 to 10 µM, a sensitivity of 1.35 ± 0.4 A M(-1) cm(-2) and a dynamic range up to 43 µM. This enhanced laccase-based microsensor was used for water quality monitoring and its performance for total phenol analysis of wastewater samples from different stages of the cleaning process was compared to a standard method.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas/química , Lacase/química , Fenóis/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Eletrodos , Modelos Químicos
10.
Langmuir ; 30(23): 6999-7005, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24854432

RESUMO

Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

11.
Appl Opt ; 43(8): 1761-72, 2004 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-15046181

RESUMO

We develop a scattering matrix approach for the numerical calculation of resonant states and Q values of a nonideal optical disk cavity with an arbitrary shape and with an arbitrary varying refraction index. The developed method is applied to study the effect of surface roughness and inhomogeneity of the refraction index on Q values of microdisk cavities for lasing applications. We demonstrate that even small surface roughness (deltar < or approximately equal to lambda/50) can lead to a drastic degradation of high-Q cavity modes by many orders of magnitude. The results of the numerical simulation are analyzed and explained in terms of wave reflection at a curved dielectric interface, combined with an examination of Poincaré surfaces of section and of Husimi distributions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...