Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Neuropsychiatr Dis Treat ; 20: 469-478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463457

RESUMO

Functional neurosurgery involves modulation of activity within neural circuits that drive pathological activity. Neurologists and neurosurgeons have worked closely together, advancing the field for over a century, such that neurosurgical procedures for movement disorders are now accepted as "standard of care", benefiting hundreds of thousands of patients. As with movement disorders, some neuropsychiatric illnesses, including obsessive compulsive disorder and depression, can be framed as disorders of neural networks. Over the past two decades, evidence has accumulated that stereotactic neurosurgery can help some patients with mental disorders. Nevertheless, despite the availability of class I evidence for some interventions, there is a huge mismatch between the prevalence of severe refractory mental disorders and the number of referrals made to specialised functional neurosurgery services. This paper examines the historical trajectory of neurosurgery for movement and mental disorders. A review of neurosurgical techniques, including stereotactic radiofrequency ablation, gamma knife, deep brain stimulation, and magnetic resonance imaging guided focused ultrasound, explains the high degree of safety afforded by technological advances in the field. Evidence from clinical trials supporting functional neurosurgery for mental disorders, including obsessive compulsive disorder and depression, is presented. An improved understanding of modern functional neurosurgery should foster collaboration between psychiatry and neurosurgery, providing hope to patients whose symptoms are refractory to all other treatments.

3.
Nat Neurosci ; 27(3): 573-586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388734

RESUMO

Frontal circuits play a critical role in motor, cognitive and affective processing, and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)functions remains largely elusive. We studied 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregated the frontal cortex into circuits that had become dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to frontal, ranging from interconnections with sensorimotor cortices in dystonia, the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairments in the human brain.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Humanos , Encéfalo , Córtex Motor/fisiologia , Doença de Parkinson/terapia , Mapeamento Encefálico
5.
J Neurosurg ; 140(4): 1148-1154, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856400

RESUMO

OBJECTIVE: Radiofrequency thalamotomy (RF-T) is an established treatment for refractory tremor. It is unclear whether connectivity-guided targeting strategies could further augment outcomes. The aim of this study was to evaluate the efficacy and safety of MRI connectivity-guided RF-T in severe tremor. METHODS: Twenty-one consecutive patients with severe tremor (14 with essential tremor [ET], 7 with Parkinson's disease [PD]) underwent unilateral RF-T at a single institution between 2017 and 2020. Connectivity-derived thalamic segmentation was used to guide targeting. Changes in the Fahn-Tolosa-Marin Rating Scale (FTMRS) were recorded in treated and nontreated hands as well as procedure-related side effects. RESULTS: Twenty-three thalamotomies were performed (with 2 patients receiving a repeated intervention). The mean postoperative assessment time point was 14.1 months. Treated-hand tremor scores improved by 63.8%, whereas nontreated-hand scores deteriorated by 10.1% (p < 0.01). Total FTMRS scores were significantly better at follow-up compared with baseline (mean 34.7 vs 51.7, p = 0.016). Baseline treated-hand tremor severity (rho = 0.786, p < 0.01) and total FTMRS score (rho = 0.64, p < 0.01) best correlated with tremor improvement. The most reported side effect was mild gait ataxia (n = 11 patients). CONCLUSIONS: RF-T guided by connectivity-derived segmentation is a safe and effective option for severe tremor in both PD and ET.


Assuntos
Tremor Essencial , Transtornos Heredodegenerativos do Sistema Nervoso , Doença de Parkinson , Humanos , Tremor/diagnóstico por imagem , Tremor/etiologia , Tremor/cirurgia , Resultado do Tratamento , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Doença de Parkinson/terapia , Imageamento por Ressonância Magnética
6.
Biol Psychiatry ; 96(2): 101-113, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141909

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is a promising treatment option for treatment-refractory obsessive-compulsive disorder (OCD). Several stimulation targets have been used, mostly in and around the anterior limb of the internal capsule and ventral striatum. However, the precise target within this region remains a matter of debate. METHODS: Here, we retrospectively studied a multicenter cohort of 82 patients with OCD who underwent DBS of the ventral capsule/ventral striatum and mapped optimal stimulation sites in this region. RESULTS: DBS sweet-spot mapping performed on a discovery set of 58 patients revealed 2 optimal stimulation sites associated with improvements on the Yale-Brown Obsessive Compulsive Scale, one in the anterior limb of the internal capsule that overlapped with a previously identified OCD-DBS response tract and one in the region of the inferior thalamic peduncle and bed nucleus of the stria terminalis. Critically, the nucleus accumbens proper and anterior commissure were associated with beneficial but suboptimal clinical improvements. Moreover, overlap with the resulting sweet- and sour-spots significantly estimated variance in outcomes in an independent cohort of 22 patients from 2 additional DBS centers. Finally, beyond obsessive-compulsive symptoms, stimulation of the anterior site was associated with optimal outcomes for both depression and anxiety, while the posterior site was only associated with improvements in depression. CONCLUSIONS: Our results suggest how to refine targeting of DBS in OCD and may be helpful in guiding DBS programming in existing patients.


Assuntos
Estimulação Encefálica Profunda , Cápsula Interna , Transtorno Obsessivo-Compulsivo , Humanos , Transtorno Obsessivo-Compulsivo/terapia , Estimulação Encefálica Profunda/métodos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Pessoa de Meia-Idade , Cápsula Interna/diagnóstico por imagem , Estriado Ventral/diagnóstico por imagem , Estriado Ventral/fisiopatologia , Resultado do Tratamento , Adulto Jovem
8.
Mov Disord Clin Pract ; 10(11): 1639-1649, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37982119

RESUMO

Background: Tremor in Parkinson's disease (PD) has an inconsistent response to levodopa and subthalamic deep brain stimulation (STN-DBS). Objectives: To identify predictive factors of PD tremor responsiveness to levodopa and STN-DBS. Material and Methods: PD patients with upper limb tremor who underwent STN-DBS were included. The levodopa responsiveness of tremor (overall, postural, and rest sub-components), was assessed using the relevant Unified Parkinson's Disease Rating Scale-III items performed during the preoperative assessment. Post-surgical outcomes were similarly assessed ON and OFF stimulation. A score for the rest/postural tremor ratio was used to determine the influence of rest and postural tremor severity on STN-DBS outcome. Factors predictive of tremor responsiveness were determined using multiple linear regression modeling. Volume of tissue activated measurement coupled to voxel-based analysis was performed to identify anatomical clusters associated with motor symptoms improvement. Results: One hundred and sixty five patients were included in this study. Male gender was negatively correlated with tremor responsiveness to levodopa, whereas the ratio of rest/postural tremor was positively correlated with both levodopa responsiveness and STN-DBS tremor outcome. Clusters corresponding to improvement of tremor were in the subthalamic nucleus, the zona incerta and the thalamus, whereas clusters corresponding to improvement for akinesia and rigidity were located within the subthalamic nucleus. Conclusion: More severe postural tremor and less severe rest tremor were associated with both poorer levodopa and STN-DBS response. The different locations of clusters associated with best correction of tremor and other parkinsonian features suggest that STN-DBS effect on PD symptoms is underpinned by the modulation of different networks.

9.
Neurology ; 101(23): e2423-e2433, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37848331

RESUMO

BACKGROUND AND OBJECTIVES: Deep brain stimulation (DBS) of the ventral tegmental area (VTA) is a surgical treatment option for selected patients with refractory chronic cluster headache (CCH). We aimed to identify clinical and structural neuroimaging factors associated with response to VTA DBS in CCH. METHODS: This prospective observational cohort study examines consecutive patients with refractory CCH treated with VTA DBS by a multidisciplinary team in a single tertiary neuroscience center as part of usual care. Headache diaries and validated questionnaires were completed at baseline and regular follow-up intervals. All patients underwent T1-weighted structural MRI before surgery. We compared clinical features using multivariable logistic regression and neuroanatomic differences using voxel-based morphometry (VBM) between responders and nonresponders. RESULTS: Over a 10-year period, 43 patients (mean age 53 years, SD 11.9), including 29 male patients, with a mean duration of CCH 12 years (SD 7.4), were treated and followed up for at least 1 year (mean follow-up duration 5.6 years). Overall, there was a statistically significant improvement in median attack frequency from 140 to 56 per month (Z = -4.95, p < 0.001), attack severity from 10/10 to 8/10 (Z = -4.83, p < 0.001), and duration from 110 to 60 minutes (Z = -3.48, p < 0.001). Twenty-nine (67.4%) patients experienced ≥50% improvement in attack frequency and were therefore classed as responders. There were no serious adverse events. The most common side effects were discomfort or pain around the battery site (7 patients) and transient diplopia and/or oscillopsia (6 patients). There were no differences in demographics, headache characteristics, or comorbidities between responders and nonresponders. VBM identified increased neural density in nonresponders in several brain regions, including the orbitofrontal cortex, anterior cingulate cortex, anterior insula, and amygdala, which were statistically significant (p < 0.001). DISCUSSION: VTA DBS showed no serious adverse events, and, although there was no placebo control, was effective in approximately two-thirds of patients at long-term follow-up. This study did not reveal any reliable clinical predictors of response. However, nonresponders had increased neural density in brain regions linked to processing of pain and autonomic function, both of which are prominent in the pathophysiology of CCH.


Assuntos
Cefaleia Histamínica , Estimulação Encefálica Profunda , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cefaleia Histamínica/terapia , Estimulação Encefálica Profunda/métodos , Cefaleia/etiologia , Dor/etiologia , Estudos Prospectivos , Resultado do Tratamento , Área Tegmentar Ventral/diagnóstico por imagem
10.
Netw Neurosci ; 7(2): 478-495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397890

RESUMO

Beyond the established effects of subthalamic nucleus deep brain stimulation (STN-DBS) in reducing motor symptoms in Parkinson's disease, recent evidence has highlighted the effect on non-motor symptoms. However, the impact of STN-DBS on disseminated networks remains unclear. This study aimed to perform a quantitative evaluation of network-specific modulation induced by STN-DBS using Leading Eigenvector Dynamics Analysis (LEiDA). We calculated the occupancy of resting-state networks (RSNs) in functional MRI data from 10 patients with Parkinson's disease implanted with STN-DBS and statistically compared between ON and OFF conditions. STN-DBS was found to specifically modulate the occupancy of networks overlapping with limbic RSNs. STN-DBS significantly increased the occupancy of an orbitofrontal limbic subsystem with respect to both DBS OFF (p = 0.0057) and 49 age-matched healthy controls (p = 0.0033). Occupancy of a diffuse limbic RSN was increased with STN-DBS OFF when compared with healthy controls (p = 0.021), but not when STN-DBS was ON, which indicates rebalancing of this network. These results highlight the modulatory effect of STN-DBS on components of the limbic system, particularly within the orbitofrontal cortex, a structure associated with reward processing. These results reinforce the value of quantitative biomarkers of RSN activity in evaluating the disseminated impact of brain stimulation techniques and the personalization of therapeutic strategies.

11.
medRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36945497

RESUMO

Frontal circuits play a critical role in motor, cognitive, and affective processing - and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)function remains largely elusive. Here, we study 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregate the frontal cortex into circuits that became dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to rostral, ranging from interconnections with sensorimotor cortices in dystonia, with the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairment in the human brain.

12.
NPJ Parkinsons Dis ; 9(1): 50, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002261

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for Parkinson's disease (PD). Varying the frequency DBS has differential effects on axial and distal limb functions, suggesting differing modulation of relevant pathways. The STN is also a critical node in oculomotor and associative networks, but the effect of stimulation frequency on these networks remains unknown. This study aimed to investigate the effects of 80 hz vs. 130 Hz frequency STN-DBS on eye movements and executive control. Twenty-one STN-DBS PD patients receiving 130 Hz vs. 80 Hz stimulation were compared to a healthy control group (n = 16). All participants were tested twice in a double-blind manner. We examined prosaccades (latency and gain) and antisaccades (latency of correct and incorrect antisaccades, error rate and gain of the correct antisaccades). Executive function was tested with the Stroop task. The motor condition was assessed using Unified Parkinson's Disease Rating Scale part III. The antisaccadic error rate was higher in patients (p = 0.0113), more so in patients on 80 Hz compared to 130 Hz (p = 0.001) stimulation. The differences between patients and controls and between frequencies for all other eye-movements or cognitive measures were not statistically significant. We show that 80 Hz STN-DBS in PD reduces the ability to maintain stable fixation but does not alter inhibition, resulting in a higher antisaccade error rate presumably due to less efficient fixation, without altering the motor state. This provides a wider range of stimulation parameters that can reduce specific DBS-related effects without affecting motor outcomes.

13.
Brain Sci ; 12(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36291313

RESUMO

(1) Background: Major depressive disorder (MDD) generates a large proportion of global disease burden. Stereotactic radiofrequency ablation (SRA) may be beneficial for selected patients with its most debilitating and refractory forms, but effect size is uncertain. (2) Methods: A systematic literature review and meta-analysis on SRA for MDD was carried out. Patient-level data were extracted from articles reporting validated depression measures (Beck Depression Inventory (BDI), Montgomery-Åsberg Depression Rating Scale (MADRS)), pre- and at least six months post surgery. To accommodate different outcome measures, the standardised mean difference (SMD) between both scores was used as the principal effect size. Data were synthesised using a random-effects model. (3) Results: Five distinct studies were identified, comprising 116 patients (64 included in meta-analysis). Effect size comparing post- vs. pre-operative scores was 1.66 (CI 1.25-2.07). Anterior cingulotomy (two studies, n = 22) and anterior capsulotomy (three studies, n = 42) showed similar effect sizes: 1.51 (CI 0.82-2.20) vs. 1.74 (CI 1.23-2.26). Multiple procedures were performed in 30 of 116 (25.9%) patients. Based on patient-level data, 53% (n = 47) were responders (≥50% improvement), of which 34% reached remission (MADRS ≤ 10 or BDI ≤ 11). BDI mean improvement was 16.7 (44.0%) after a second procedure (n = 19). (4) Conclusions: The results are supportive of the benefit of SRA in selected patients with refractory MDD.

14.
J Neurosurg ; : 1-10, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36308483

RESUMO

OBJECTIVE: Suboptimal lead placement is one of the most common indications for deep brain stimulation (DBS) revision procedures. Confirming lead placement in relation to the visible anatomical target with dedicated stereotactic imaging before terminating the procedure can mitigate this risk. In this study, the authors examined the accuracy, precision, and safety of intraoperative MRI (iMRI) to both guide and verify lead placement during frame-based stereotactic surgery. METHODS: A retrospective analysis of 650 consecutive DBS procedures for targeting accuracy, precision, and perioperative complications was performed. Frame-based lead placement took place in an operating room equipped with an MRI machine using stereotactic images to verify lead placement before removing the stereotactic frame. Immediate lead relocation was performed when necessary. Systematic analysis of the targeting error was calculated. RESULTS: Verification of 1201 DBS leads with stereotactic MRI was performed in 643 procedures and with stereotactic CT in 7. The mean ± SD of the final targeting error was 0.9 ± 0.3 mm (range 0.1-2.3 mm). Anatomically acceptable lead placement was achieved with a single brain pass for 97% (n = 1164) of leads; immediate intraoperative relocation was performed in 37 leads (3%) to obtain satisfactory anatomical placement. General anesthesia was used in 91% (n = 593) of the procedures. Hemorrhage was noted after 4 procedures (0.6%); 3 patients (0.4% of procedures) presented with transient neurological symptoms, and 1 experienced delayed cognitive decline. Two bleeds coincided with immediate relocation (2 of 37 leads, 5.4%), which contrasts with hemorrhage in 2 (0.2%) of 1164 leads implanted on the first pass (p = 0.0058). Three patients had transient seizures in the postoperative period. The seizures coincided with hemorrhage in 2 of these patients and with immediate lead relocation in the other. There were 21 infections (3.2% of procedures, 1.5% in 3 months) leading to hardware removal. Delayed (> 3 months) retargeting of 6 leads (0.5%) in 4 patients (0.6% of procedures) was performed because of suboptimal stimulation benefit. There were no MRI-related complications, no permanent motor deficits, and no deaths. CONCLUSIONS: To the authors' knowledge, this is the largest series reporting the use of iMRI to guide and verify lead location during DBS surgery. It demonstrates a high level of accuracy, precision, and safety. Significantly higher hemorrhage was encountered when multiple brain passes were required for lead implantation, although none led to permanent deficit. Meticulous audit and calibration can improve precision and maximize safety.

15.
J Headache Pain ; 23(1): 114, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057552

RESUMO

BACKGROUND: Trigeminal neuralgia is an episodic severe neuralgic pain and can be managed both medically and surgically. If possible, this should be directed by a Multidisciplinary Team (MDT) of specialised surgeons, physicians, dentists, psychologists and specialist nurses with access to all treatment modalities, which enables patients to make an informed decision about their future management. OBJECTIVE: The aim of this study was to review the outcomes of patients managed by an MDT clinic, in a single institute over an eleven-year period. METHODS: A prospective database was used to identify patients with trigeminal neuralgia or its variants who had attended a joint MDT clinic. The electronic notes were examined for demographics, onset and duration of trigeminal neuralgia, medications history, pain scores and details of surgical procedures if any by two independent assessors. RESULTS: Three hundred thirty-four patients attended the MDT between 2008-2019. Forty-nine of them had surgery before being referred to the service and were included but analysed as a subgroup. Of the remaining patients, 54% opted to have surgery following the MDT either immediately or at a later date. At the last reported visit 55% of patients who opted to have surgery were pain free and off medications, compared to 15.5% of medically managed patients. Surgical complications were mostly attributable to numbness and in the majority of cases this was temporary. All patients who were not pain free, had complications after surgery or opted to remain on medical therapy were followed up in a facial pain clinic which has access to pain physicians, clinical nurse specialists and a tailored pain management program. Regular patient related outcome measures are collected to evaluate outcomes. CONCLUSION: An MDT clinic offers an opportunity for shared decision making with patients deciding on their personal care pathway which is valued by patients. Not all patients opt for surgery, and some continue to attend a multidisciplinary follow up program. Providing a full range of services including psychological support, improves outcomes.


Assuntos
Radiocirurgia , Neuralgia do Trigêmeo , Dor Facial , Seguimentos , Humanos , Clínicas de Dor , Resultado do Tratamento , Neuralgia do Trigêmeo/diagnóstico , Neuralgia do Trigêmeo/cirurgia
16.
Mov Disord Clin Pract ; 9(6): 765-774, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35937485

RESUMO

Background: Degeneration of the nucleus basalis of Meynert (NBM) and cortical cholinergic dysfunction are hallmarks of Parkinson's disease dementia (PDD). There is no effective therapy for PDD. Deep brain stimulation of the NBM (NBM-DBS) has been trialed as a potential treatment. Objective: Our primary aim was to evaluate the sustained tolerability of NBM-DBS in PDD, and its impact on global cognition, behavioral symptoms, quality of life and caregiver burden and distress. Second, we aimed to determine whether baseline measures of arousal, alertness, and attention were predictive of the three year response to NBM-DBS in PDD patients. Methods: Five of the six PDD patients who completed the baseline assessment participated in a 3 year follow up assessment. We assessed the participants after three years of NBM-DBS on the Mini Mental State Examination, Dementia Rating Scale-2, Blessed Dementia Rating Scale, Neuropsychiatric Inventory, and the SF36. Results: The five patients showed varying trajectories of cognitive decline, with two showing a slower progression over the three-year follow-up period. A slower progression of decline on global cognition was associated with higher baseline accuracy on the Posner covert orienting of attention test, and less daytime sleepiness. Conclusions: Whether slower progression of cognitive decline in two patients was in any way related to individual variability in responsiveness to NBM-DBS requires confirmation in a larger series including an unoperated PDD control group. Higher accuracy in covertly orienting attention and better sleep quality at baseline were associated with better cognitive outcomes at 36 months assessment. These results require validation in future studies with larger samples.

19.
J Neurosci ; 42(23): 4681-4692, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35501153

RESUMO

Making accurate decisions often involves the integration of current and past evidence. Here, we examine the neural correlates of conflict and evidence integration during sequential decision-making. Female and male human patients implanted with deep-brain stimulation (DBS) electrodes and age-matched and gender-matched healthy controls performed an expanded judgment task, in which they were free to choose how many cues to sample. Behaviorally, we found that while patients sampled numerically more cues, they were less able to integrate evidence and showed suboptimal performance. Using recordings of magnetoencephalography (MEG) and local field potentials (LFPs; in patients) in the subthalamic nucleus (STN), we found that ß oscillations signaled conflict between cues within a sequence. Following cues that differed from previous cues, ß power in the STN and cortex first decreased and then increased. Importantly, the conflict signal in the STN outlasted the cortical one, carrying over to the next cue in the sequence. Furthermore, after a conflict, there was an increase in coherence between the dorsal premotor cortex and STN in the ß band. These results extend our understanding of cortico-subcortical dynamics of conflict processing, and do so in a context where evidence must be accumulated in discrete steps, much like in real life. Thus, the present work leads to a more nuanced picture of conflict monitoring systems in the brain and potential changes because of disease.SIGNIFICANCE STATEMENT Decision-making often involves the integration of multiple pieces of information over time to make accurate predictions. We simultaneously recorded whole-head magnetoencephalography (MEG) and local field potentials (LFPs) from the human subthalamic nucleus (STN) in a novel task which required integrating sequentially presented pieces of evidence. Our key finding is prolonged ß oscillations in the STN, with a concurrent increase in communication with frontal cortex, when presented with conflicting information. These neural effects reflect the behavioral profile of reduced tendency to respond after conflict, as well as relate to suboptimal cue integration in patients, which may be directly linked to clinically reported side-effects of deep-brain stimulation (DBS) such as impaired decision-making and impulsivity.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Núcleo Subtalâmico , Ritmo beta , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Magnetoencefalografia , Masculino , Córtex Motor/fisiologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia
20.
Neuromodulation ; 25(8): 1187-1196, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35241365

RESUMO

BACKGROUND: Neurofeedback training is a closed-loop neuromodulatory technique in which real-time feedback of brain activity and connectivity is provided to the participant for the purpose of volitional neural control. Through practice and reinforcement, such learning has been shown to facilitate measurable changes in brain function and behavior. OBJECTIVES: In this review, we examine how neurofeedback, coupled with motor imagery training, has the potential to improve or normalize motor function in neurological diseases such as Parkinson disease and chronic stroke. We will also explore neurofeedback in the context of brain-machine interfaces (BMIs), discussing both noninvasive and invasive methods which have been used to power external devices (eg, robot hand orthosis or exoskeleton) in the context of motor neurorehabilitation. CONCLUSIONS: The published literature provides mounting high-quality evidence that neurofeedback and BMI control may lead to clinically relevant changes in brain function and behavior.


Assuntos
Interfaces Cérebro-Computador , Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Encéfalo , Aprendizagem , Atividade Motora
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...