Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(1): eadd3669, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608119

RESUMO

One of the circuit topologies for the implementation of unipolar integrated circuits (circuits that use either p-channel or n-channel transistors, but not both) is the zero-VGS architecture. Zero-VGS circuits often provide excellent static performance (large small-signal gain and large noise margins), but they suffer from the large signal delay imposed by the load transistor. To address this limitation, we have used electron-beam lithography to fabricate zero-VGS circuits based on organic transistors with channel lengths as small as 120 nm on flexible polymeric substrates. For a supply voltage of 3 V, these circuits have characteristic signal-delay time constants of 14 ns for the low-to-high transition and 560 ns for the high-to-low transition of the circuit's output voltage. These signal delays represent the best dynamic performance reported to date for organic transistor-based zero-VGS circuits. The signal-delay time constant of 14 ns is also the smallest signal delay reported to date for flexible organic transistors.

2.
Nanoscale Adv ; 4(8): 2018-2028, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133418

RESUMO

A method is proposed to estimate the lateral resolution of surface potential profile measurements using Kelvin probe force microscopy (KPFM) on operating electronic devices. De-embedding the measured profile from the system response is required for various applications, such as contact characterization of thin-film transistors, or local longitudinal electric field measurements. A method is developed based on the measurement of the electric potential profile of two metallic electrodes separated by a nano-gap, providing a quasi-planar configuration. The electrodes are independently biased so as to produce an abrupt and well-controlled potential step. This calibration sample is used to measure the system impulse response in various configurations. Due to the application constrains, the KPFM method employed here is based on a dual-pass mode, demonstrated to provide reliable measurements on operating electronic devices. The method is applied to two types of conductive AFM probes. Measurements are performed at different tip-to-sample heights allowing the determination of the lateral resolution of the double-pass method. Detailed description of the measurements and resolution results are given for the present KPFM configuration. The system resolution measurement technique can be extended to other KPFM modes and can be used to monitor the degradation of the tip quality during long measurement campaigns. Finally, the method is applied to the characterization of thin-film transistors, and the effects of contact edge sharpness on the device behavior is discussed. The longitudinal electric field responsible for charge injection at the source-contact edge is successfully estimated and compared for organic thin-film transistors fabricated by stencil lithography or electron-beam lithography.

3.
Sci Adv ; 8(13): eabm9845, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35363511

RESUMO

Direct-write electron-beam lithography has been used to fabricate low-voltage p-channel and n-channel organic thin-film transistors with channel lengths as small as 200 nm and gate-to-contact overlaps as small as 100 nm on glass and on flexible transparent polymeric substrates. The p-channel transistors have on/off current ratios as large as 4 × 109 and subthreshold swings as small as 70 mV/decade, and the n-channel transistors have on/off ratios up to 108 and subthreshold swings as low as 80 mV/decade. These are the largest on/off current ratios reported to date for nanoscale organic transistors. Inverters based on two p-channel transistors with a channel length of 200 nm and gate-to-contact overlaps of 100 nm display characteristic switching-delay time constants between 80 and 40 ns at supply voltages between 1 and 2 V, corresponding to a supply voltage-normalized frequency of about 6 MHz/V. This is the highest voltage-normalized dynamic performance reported to date for organic transistors fabricated by maskless lithography.

4.
Chemistry ; 27(59): 14778-14784, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34310792

RESUMO

Herein, we describe a gold-catalyzed cascade cyclization of Boc-protected benzylamines bearing two tethered alkyne moieties in a domino reaction initiated by a 6-endo-dig cyclization. The reaction was screened intensively, and the scope was explored, resulting in nine new Boc-protected dihydrobenzo[c]phenanthridines with yields of up to 98 %; even a π-extension and two bidirectional approaches were successful. Furthermore, thermal cleavage of the Boc group and subsequent oxidation gave substituted benzo[c]phenanthridines in up to quantitative yields. Two bidirectional approaches under the optimized conditions were successful, and the resulting π-extended molecules were tested as organic semiconductors in organic thin-film transistors.


Assuntos
Alcinos , Fenantridinas , Catálise , Ciclização , Estrutura Molecular
5.
Sci Rep ; 11(1): 6382, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737629

RESUMO

A critical requirement for the application of organic thin-film transistors (TFTs) in mobile or wearable applications is low-voltage operation, which can be achieved by employing ultrathin, high-capacitance gate dielectrics. One option is a hybrid dielectric composed of a thin film of aluminum oxide and a molecular self-assembled monolayer in which the aluminum oxide is formed by exposure of the surface of the aluminum gate electrode to a radio-frequency-generated oxygen plasma. This work investigates how the properties of such dielectrics are affected by the plasma power and the duration of the plasma exposure. For various combinations of plasma power and duration, the thickness and the capacitance of the dielectrics, the leakage-current density through the dielectrics, and the current-voltage characteristics of organic TFTs in which these dielectrics serve as the gate insulator have been evaluated. The influence of the plasma parameters on the surface properties of the dielectrics, the thin-film morphology of the vacuum-deposited organic-semiconductor films, and the resulting TFT characteristics has also been investigated.

6.
Sci Adv ; 6(21): eaaz5156, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32671209

RESUMO

The primary driver for the development of organic thin-film transistors (TFTs) over the past few decades has been the prospect of electronics applications on unconventional substrates requiring low-temperature processing. A key requirement for many such applications is high-frequency switching or amplification at the low operating voltages provided by lithium-ion batteries (~3 V). To date, however, most organic-TFT technologies show limited dynamic performance unless high operating voltages are applied to mitigate high contact resistances and large parasitic capacitances. Here, we present flexible low-voltage organic TFTs with record static and dynamic performance, including contact resistance as small as 10 Ω·cm, on/off current ratios as large as 1010, subthreshold swing as small as 59 mV/decade, signal delays below 80 ns in inverters and ring oscillators, and transit frequencies as high as 21 MHz, all while using an inverted coplanar TFT structure that can be readily adapted to industry-standard lithographic techniques.

7.
Chemistry ; 26(46): 10585-10590, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32314830

RESUMO

A new synthetic route to tetraindenopyrene (TIP)-a bowl-shaped cut-out structure of C70 -is reported. The key step in this approach is a fourfold palladium-catalyzed C-H activation that increases the yield more than 50 times in comparison to the approach originally described by Scott and co-workers. Besides examination of its optoelectronic properties and study of its aggregation in solution, TIP was also re-investigated by dispersion-corrected DFT methods, which showed that dispersion interactions significantly increase the bowl-to-bowl inversion barrier. Furthermore, TIP was used as a semiconductor in p-channel thin-film transistors (TFTs).

8.
Org Lett ; 22(6): 2298-2302, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32118454

RESUMO

Chlorination and bromination of 2,9-perfluoropropyl-substituted tetraazaperopyrenes (TAPPs) under forcing conditions resulted in fully core-halogenated TAPP derivatives, devoid of hydrogen atoms at the polycyclic aromatic core. The octahalogenation stabilized the reduced mono- and dianionic compounds sufficiently to allow for their characterization. The additional ortho-chlorination led to an improvement of the electron mobility compared to the bay-substituted tetrachloro-TAPP when employed as an n-channel semiconductor in thin-film transistors.

9.
Chemistry ; 25(64): 14669-14678, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31529719

RESUMO

A new synthesis of tetraazaperopyrenes (TAPPs) starting from a halogenated perylene derivative 3,4,9,10- tetrabromo-1,6,7,12-tetrachloroperylene (1) gave access to bay-substituted TAPPs for the first time. Selective lithiation of the bromine-positions and subsequent addition of tosyl azide led to the formation of the tetraazidotetrachloroperylene (2), which was subsequently reduced by addition of sodium borohydride to the corresponding tetraaminotetrachloroperylene (3). Oxidation to its semiquinoidal form 4 and subsequent cyclization with acid chlorides gave rise to a series of bay-chlorinated TAPPs. Whereas the aromatic core of the previously studied ortho-substituted TAPPs was found to be planar, the steric pressure of the two chlorine substituents on each side leads to the twist of the peropyrene core of approximately 30 degrees, a structural feature also observed in other bay-substituted perylene derivatives. An experimental and computational analysis reveals that introducing chloride substituents at these positions leads to slightly increased electron affinities (EA) enabling the selective generation and characterization of the reduced mono-anionic radicals and closed shell di-anionic species. These anions were isolated and characterized by UV/Vis spectroscopy and EPR or NMR, respectively. Processing of the bay-chlorinated TAPPs in n-channel organic TFTs revealed electron mobilities of 0.001 to 0.003 cm2 V-1 s-1 . These reduced electron mobilities compared to the ortho-halogenated TAPPs are thought to be rooted in the less densely packed solid-state structures.

10.
Org Lett ; 20(5): 1409-1412, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29446956

RESUMO

A series of π-extended cycl[3,3,2]azines (3) bearing additional carbonyl groups were synthesized via aldol condensations. Two strong electron acceptor molecules (4 and 5), with low-lying LUMO energy levels of -3.99 and -3.95 eV, respectively, were obtained. Organic thin-film transistors (TFTs) based on the cyanated cyclazine derivatives 5 were fabricated by vapor deposition, exhibiting extraordinarily stable n-type semiconductor character under ambient condition with the highest electron mobility of 0.06 cm2 V-1 s-1 consistently for more than 30 months.

11.
ACS Appl Mater Interfaces ; 9(49): 42912-42918, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29200255

RESUMO

Ultrathin sheets of two-dimensional (2D) materials like transition metal dichalcogenides have attracted strong attention as components of high-performance light-harvesting devices. Here, we report the implementation of Schottky junction-based photovoltaic devices through site-selective surface doping of few-layer WSe2 in lateral contact configuration. Specifically, whereas the drain region is covered by a strong molecular p-type dopant (NDP-9) to achieve an Ohmic contact, the source region is coated with an Al2O3 layer, which causes local n-type doping and correspondingly an increase of the Schottky barrier at the contact. By scanning photocurrent microscopy using green laser light, it could be confirmed that photocurent generation is restricted to the region around the source contact. The local photoinduced charge separation is associated with a photoresponsivity of up to 20 mA W-1 and an external quantum efficiency of up to 1.3%. The demonstrated device concept should be easily transferrable to other van der Waals 2D materials.

12.
J Org Chem ; 82(23): 12492-12502, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29112438

RESUMO

Tetraazaperopyrenes (TAPPs) have been functionalized with thiophene and terthiophene units of different architecture resulting in a variety of organic donor-acceptor (D-A) compounds. The influence of the connection of the thiophenes to the TAPP core on their structural, photophysical and electrochemical properties has been studied in detail by a combination of X-ray crystallography, UV-vis and fluorescence spectroscopy as well as cyclic voltammetry, which allowed the establishment of structure-property relationships. The HOMO-LUMO gap is significantly decreased upon substitution of the TAPP core with electron-donating thiophene units, the extent of which is strongly influenced by the orientation of the thiophene units. The latter also crucially directs the molecular packing in the solid. Linkage at the α-position allows both inter- and intramolecular N···S interaction, whereas linkage in the ß-position prevents intramolecular N···S interaction, resulting in a less pronounced conjugation of the TAPP core and the thiophene units. The new TAPP derivatives were processed as semiconductors in organic thin-film transistors (TFTs) that show ambipolar behavior. The insight into band gap and structure engineering may open up new possibilities to tailor the electronic properties of TAPP-based materials for certain desired applications.

13.
ACS Sens ; 2(5): 655-662, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28723169

RESUMO

Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.

14.
Chemistry ; 22(42): 14840-14845, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27428573

RESUMO

Fused, extended π-systems such as larger acenes and heteroacenes are interesting compounds for organic thin-film transistors (TFTs). The larger the number of linearly cata-fused rings, the lower the stability of the acenes. By peri-fusion of additional rings, the stabilities can significantly be increased. Here we present a facile approach to use a diborylated dihydroanthracene as precursor to get diareno-fused perylenes in just two steps in high yields. The compounds show pronounced packing in the crystalline states by π-stacking. Promising candidates have been used to fabricate p-channel TFTs by vacuum sublimation showing field-effect mobilities up to 0.12 cm2 V-1 s-1 .

15.
Chemistry ; 21(49): 17691-700, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26507207

RESUMO

A detailed study on the effects of core halogenation of tetraazaperopyrene (TAPP) derivatives is presented. Its impact on the solid structure, as well as the photophysical and electrochemical properties, has been probed by the means of X-ray crystallography, UV/Vis and fluorescence spectroscopy, high-resolution electron energy loss spectroscopy (HREELS), cyclic voltammetry (CV), and DFT modeling. The aim was to assess the potential of this approach as a construction principle for organic electron-conducting materials of the type studied in this work. Although halogenation leads to a stabilization of the LUMOs compared to the unsubstituted parent compound, the nature of the halide barely affects the LUMO energy while strongly influencing the HOMO energies. In terms of band-gap engineering, it was demonstrated that the HOMO-LUMO gap is decreased by substitution of the TAPP core with halides, the effect being found to be most pronounced for the iodinated derivative. The performance of the recently reported core-fluorinated and core-iodinated TAPP derivatives in organic thin-film transistors (TFTs) was investigated on both a glass substrate, as well as on a flexible plastic substrate (PEN). Field-effect mobilities of up to 0.17 cm(2) Vs(-1) and on/off current ratio of >10(6) were established.

16.
ACS Appl Mater Interfaces ; 7(41): 22775-85, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26415103

RESUMO

The mechanisms behind the threshold-voltage shift in organic transistors due to functionalizing of the gate dielectric with self-assembled monolayers (SAMs) are still under debate. We address the mechanisms by which SAMs determine the threshold voltage, by analyzing whether the threshold voltage depends on the gate-dielectric capacitance. We have investigated transistors based on five oxide thicknesses and two SAMs with rather diverse chemical properties, using the benchmark organic semiconductor dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene. Unlike several previous studies, we have found that the dependence of the threshold voltage on the gate-dielectric capacitance is completely different for the two SAMs. In transistors with an alkyl SAM, the threshold voltage does not depend on the gate-dielectric capacitance and is determined mainly by the dipolar character of the SAM, whereas in transistors with a fluoroalkyl SAM the threshold voltages exhibit a linear dependence on the inverse of the gate-dielectric capacitance. Kelvin probe force microscopy measurements indicate this behavior is attributed to an electronic coupling between the fluoroalkyl SAM and the organic semiconductor.

17.
Adv Mater ; 25(27): 3639-44, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23616376

RESUMO

Low-operating-voltage flexible organic thin-film transistors with high thermal stability using DPh-DNTT and SAM gate dielectrics are reported. The mobility of the transistors are decreased by 23% after heating to 250 °C for 30 min. Furthermore, flexible organic pseudo-CMOS inverter circuits, which are functional after heating to 200 °C, are demonstrated.


Assuntos
Compostos Orgânicos/química , Temperatura , Eletricidade , Transistores Eletrônicos
18.
J Am Chem Soc ; 134(43): 17869-72, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23061521

RESUMO

Here we report hexathienocoronenes (HTCs), fully thiophene-annelated coronenes in which six double bonds in the periphery are thieno-fused. The derivatives tetrasubstituted with hexyl and dodecyl chains show a phase formation that strongly depends on the chain length. HTCs are remarkably stronger donors than the known thiophene-annelated coronenes but do not readily assemble into well-ordered films when deposited from the vapor phase. Thus, thin-film transistors fabricated by vacuum deposition have only modest field-effect mobilities of 0.002 cm(2) V(-1) s(-1).


Assuntos
Compostos Policíclicos/síntese química , Compostos de Sulfidrila/síntese química , Modelos Moleculares , Estrutura Molecular , Compostos Policíclicos/química , Compostos de Sulfidrila/química
19.
J Org Chem ; 77(14): 6107-16, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22731978

RESUMO

A series of new tetraazapyrene (TAPy) derivatives has been synthesized by reducing 1,4,5,8-tetranitronaphthalene to its corresponding tin salt (I) and reacting it with perfluorinated alkyl or aryl anhydrides. The resulting 2,7-disubstituted TAPy molecules and the known parent compound 1,3,6,8-tetraazapyrene (II) have been further derivatized by core chlorination and bromination. The brominated compounds served as starting materials for Suzuki cross-coupling reactions with electron-poor arylboronic acids. Single-crystal X-ray analyses established polymorphism for some TAPy compounds. The ground-state geometries of all new TAPy derivatives were modeled with DFT methods [B3PW91/6-31 g(d,p) and B3PW91/6-311+g(d,p)], especially focusing on the energies of the lowest unoccupied molecular orbital (LUMO) and the electron affinities (EA) of the molecules. The results of the calculations were confirmed experimentally by cyclic voltammetry to evaluate the substitution effects at the 2 and 7 position and the core positions, respectively, and gave LUMO energy levels that range from -3.57 to -4.14 eV. Fabrication of organic field-effect transistors (OFETs) with several of these tetraazapyrenes established their potential as organic n-type semiconductors.


Assuntos
Pirenos/química , Pirenos/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Oxirredução , Teoria Quântica
20.
Nat Commun ; 3: 723, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22395614

RESUMO

The excellent mechanical flexibility of organic electronic devices is expected to open up a range of new application opportunities in electronics, such as flexible displays, robotic sensors, and biological and medical electronic applications. However, one of the major remaining issues for organic devices is their instability, especially their thermal instability, because low melting temperatures and large thermal expansion coefficients of organic materials cause thermal degradation. Here we demonstrate the fabrication of flexible thin-film transistors with excellent thermal stability and their viability for biomedical sterilization processes. The organic thin-film transistors comprise a high-mobility organic semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, and thin gate dielectrics comprising a 2-nm-thick self-assembled monolayer and a 4-nm-thick aluminium oxide layer. The transistors exhibit a mobility of 1.2 cm(2) V(-1)s(-1) within a 2 V operation and are stable even after exposure to conditions typically used for medical sterilization.


Assuntos
Eletrônica Médica/instrumentação , Semicondutores , Transistores Eletrônicos , Esterilização , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...