Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 22(48): 485303, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22071321

RESUMO

Ge:SiO(x)/SiO(2) multilayers are fabricated using a new reactive dc magnetron sputtering approach. The influence of the multilayer stoichiometry on the ternary Ge-Si-O phase separation and the subsequent size-controlled Ge nanocrystal formation is explored by means of x-ray absorption spectroscopy, x-ray diffraction, electron microscopy and Raman spectroscopy. The ternary system Ge-Si-O reveals complete Ge-O phase separation at 400 °C which does not differ significantly to the binary Ge-O system. Ge nanocrystals of < 5 nm size are generated after subsequent annealing below 700 °C. It is shown that Ge oxides contained in the as-deposited multilayers are reduced by a surrounding unsaturated silica matrix. A stoichiometric regime was found where almost no GeO(2) is present after annealing. Thus, the Ge nanocrystals become completely embedded in a stoichiometric silica matrix favouring the use for photovoltaic applications.

2.
Nanotechnology ; 22(46): 465302, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22032974

RESUMO

The aim of this work is the tailored growth of Ge nanocrystals (NCs) in (GeO(x)/SiO(2)) multilayers (ML) for photovoltaic applications. For this purpose the fabrication of regularly stacked Ge NCs separated by ultrathin SiO(2) layers is essential to enable charge carrier transport by direct tunnelling. In this paper we report on the fabrication of (GeO(x)/SiO(2))(50) multilayer stacks via reactive dc magnetron sputtering and Ge NCs formation after subsequent annealing. It is shown that magnetron sputtering allows us to deposit very regular ML stacks with a total thickness of about 300 nm, characterized by ultrathin (down to 1 nm) and very smooth (roughness ∼ 0.6 nm) SiO(2) separation layers. A main challenge is to keep these properties for a thermal budget necessary to form Ge NCs. For this reason, the temperature dependence of phase separation. Ge crystallization and ML morphology was investigated by Rutherford backscattering, x-ray scattering, Raman spectroscopy and electron microscopy. The formation of size confined Ge NCs of about 5 nm after annealing of only 550 °C is confirmed. This low thermal budget ensures the suppression of GeO emanation and multilayer stability. Spectroscopic ellipsometry was applied to determine the optical Ge NC bandgap to (1.65 ± 0.5) eV.

3.
Nanotechnology ; 22(12): 125709, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21325710

RESUMO

The influence of the annealing atmosphere on the temperature induced phase separation of Ge oxide in GeO(x)/SiO(2) multilayers (x≈1), leading to size controlled growth of Ge nanocrystals, is explored by means of x-ray absorption spectroscopy at the Ge K-edge. Ge sub-oxides contained in the as-deposited multilayers diminish with increasing annealing temperature, showing complete phase separation at approximately 450 °C using inert N(2) ambient. The use of reducing H(2) in the annealing atmosphere influences the phase separation even at an early stage of the disproportionation. In particular, the temperature regime where the phase separation occurs is lowered by at least 50 °C. At temperatures above 400 °C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO(2) by H(2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...